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Abstract: We derive a novel deformation of the warped resolved conifold background with

supersymmetry breaking ISD (1,2) fluxes by adding D7-branes to this type IIB theory. We

find spontaneous supersymmetry breaking without generating a bulk cosmological constant.

In the compactified form, our background will no longer be a Calabi-Yau manifold as it

allows a non-vanishing first Chern class. In the presence of D7-branes the (1,2) fluxes

can give rise to non-trivial D-terms. We study the Ouyang embedding of D7-branes in

detail and find that in this case the D-terms are indeed non-zero. In the limit when

we approach the singular conifold, the D-terms vanish for Ouyang’s embedding, although

supersymmetry appears to be broken.

We also construct the F-theory lift of our background and demonstrate how these IIB

(1,2) fluxes lift to non-primitive (2,2) flux on the fourfold. The seven branes correspond

to normalisable harmonic forms. We briefly sketch a possible way to attain an inflaton

potential in this background once extra D3-branes are introduced and point out some

possibilities of restoring supersymmetry in our background that could in principle be used

as the end point of the inflationary set-up. In a companion paper we will analyse in details

the inflationary dynamics in this background.
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1 Introduction

1.1 Motivation

Our motivation in studying the warped resolved conifold with soft supersymmetry breaking

is to come a step closer to a consistent string theory background that can be used to

study inflation. Current D-brane inflation models (e.g. [1–4]) are usually embedded in a

particular type IIB string theory setup that has become known as the “warped throat”. It

is a background on which fluxes create a strongly warped Calabi-Yau geometry via their

backreaction on the metric. The Calabi-Yau in question is taken to be the conifold or its

cousin the deformed conifold, in which the tip of the throat is non-singular. Placing an

anti-D-brane at the bottom of the throat and a D-brane at some distance from it, breaks

supersymmetry. Consequently, the D-brane is attracted towards the bottom of the throat

– 1 –



J
H
E
P
0
4
(
2
0
0
9
)
0
2
7

with the inter-brane distance serving as the inflaton. As has been pointed out in a variety

of papers [1, 2], it is very hard to achieve slow roll in these models.

As an alternative one can break supersymmetry spontaneously by turning on appro-

priate fluxes, e.g. instead of lifting the potential with an anti-D-brane, one can turn on

D-terms. (This idea was put forward in [5], but needed some corrections [6, 7]. In short,

one can only generate D-terms in a non-susy theory, i.e. if there are also F-terms present [8].)

There has been much interest in D-terms coming from string theory [9–13] both for

particle phenomenology and cosmological applications. D-terms can generically be created

by non-primitive flux on D-brane worldvolumes. It turns out, however, that in the case

of only D3-branes, the D-terms will vanish in the vacuum [9]. Even with D7-branes and

D3/D7 setups, the cycles wrapped by the branes need to fulfill non-trivial topological con-

ditions to achieve a D-term uplifting [11]. Although D-brane inflation mostly considers

D3-branes, D7-branes have been established as a key ingredient for moduli stabilisation.

Non-perturbative effects (gaugino condensation) on their worldvolume allow the stabiliza-

tion of the overall radial modulus.

In light of this knowledge, we propose a background that breaks supersymmetry, but

still solves the supergravity equations of motion. It contains D7-branes, which allow for

the creation of D-terms. With cosmological applications in mind, this background is a

“relative” of the warped throat, i.e. it looks asymptotically like a conifold, but has a

different behaviour near the tip. The key ingredient is the blow-up of a 2-cycle (in contrast

to the 3-cycle of the deformed conifold), which will introduce non-primitive flux into the

theory. This flux still solves the equation of motion as it is imaginary self-dual (ISD).

Generically, such a flux cannot exist on a compact Calabi-Yau. We therefore have to

generalise our manifold to some non-CY compactification, or keep the whole setup non-

compact. For simplicity, we will follow the latter approach, giving some speculations about

what a consistent non-CY compactification might induce.

1.2 The background

The simplest “throat” studied so far is the singular conifold, a warped flux background

known as the Klebanov-Tseytlin (KT) solution [14]. The singularity at the tip of the

conifold can be smoothed out in two different ways: by blowing up a 3-sphere (the deformed

conifold) or by blowing up a 2-sphere (the resolved conifold). Both these manifolds are

still Calabi-Yau. These particular backgrounds, with added fluxes, have been studied by

Klebanov-Strassler (KS) [15] and Pando Zayas-Tseytlin (PT) [16] respectively.

On the other hand, one could imagine a more general background that allows for both

blown-up 2– and 3-cycles. The “resolved warped deformed conifold” can be interpreted as

such a manifold. It was introduced [17] as an interpolating solution between the KS and

Maldacena-Nunez (MN) solutions (see also [18, 19]). It is not a CY anymore, but an SU(3)

structure manifold. Apart from the blown-up 2-cycle, there is another interesting feature:

the background exhibits a running dilaton, in contrast to the KT, KS or PT solutions on

warped CY’s with constant dilaton. Placing a D3-brane in this background will result in a

force due to this running dilaton. This does not mean that the resolved warped deformed

conifold breaks supersymmetry, but rather that the D3 oriented along Minkowski space
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does not preserve the same subset of supercharges. There is another source of a running

dilaton that will be of interest to us: D7-branes. Their behaviour will be determined by

the particular embedding we choose for the D7.

The most general “throat” background, taken to be the resolved warped deformed

conifold, has the metric

ds2 = F3 dr
2 + F4(dψ + cos θ1 dφ1 + cos θ2 dφ2)

2 (1.1)

+F1

(
dθ2

1 + sin2 θ1 dφ
2
1

)
+ F2

(
dθ2

2 + sin2 θ2 dφ
2
2

)

+2b

[
cosψ

(
dθ1dθ2 + sin θ1 sin θ2dφ1dφ2

)
− sinψ

(
sin θ2dφ2dθ1 − sin θ1dφ1dθ2

)]

where the coefficients Fi, b are functions of the radial coordinate r, (θi, φi) parameterise two

2-spheres, and ψ = 0 . . . 4π is a U(1) fibration over those spheres. The commonly known

backgrounds are found in the limits:

• singular conifold: F1 = F2 and b = 0, i.e. both 2-spheres have equal radii (and shrink

to zero size as r → 0), the cross-terms in the third line in (1.1) are absent;

• deformed conifold: F1 = F2 and b 6= 0, i.e. both 2-spheres have equal radii, but the

U(1) shift symmetry is broken due to the more complicated fibration in the third

line;

• resolved conifold: F1 6= F2 and b = 0, i.e. the 2-spheres have unequal size (this

corresponds to the breaking of a discrete Z2 exchanging both) and the third line

in (1.1) is absent.

For a complete definition of the functions Fi we refer the reader to [17, 20, 21]. They are

of course more restricted than outlined above in order to guarantee an SU(3) holonomy or

SU(3) structure. In [4], the limit

F1 ≈ F2 =
r2

6
, b→ 0, F3 = 1, F4 =

r2

9
(1.2)

was employed. In this limit the background becomes a (non-compact) singular conifold,

and one can add D7 branes using the technique discussed in [22]. This is the simplest choice

and works well in the situation when we are far from the tip of the throat and the resolution

parameter (the size of the 2-sphere that remains finite) is very small. Here, we intend to

go beyond this simplification. However, the resolved warped deformed conifold is difficult

to study, mostly because it is not a CY. We therefore choose the simplest approximation

that captures the essential feature of the blown-up 2-cycle: We choose to restrict ourselves

to the resolved conifold.

We will turn on fluxes (or rather borrow them from the PT solution [16]) that break

supersymmetry because they are not only of cohomology type (2,1), but also (1,2). This is

not possible on a compact CY. (1,2) flux can only be ISD if it is of the form J1,1∧ m̄0,1, for

some antiholomorphic 1-form m̄ (J is the Kähler form). This would require a nontrivial

one-cycle, so the first Chern class cannot be zero anymore. This argument breaks down for

– 3 –



J
H
E
P
0
4
(
2
0
0
9
)
0
2
7

non-compact manifolds, as Poincaré duality fails. For the compact cycles there is still a cor-

respondence between homology and cohomology though. In a consistent compactification,

one therefore has to change the background as to not be conformally CY, or to glue it onto a

compact bulk in such that the entire compactification manifold is no longer CY. This would

lead us beyond the case of conformal CY with flux compactifications examined in [23] or

GKP [24], and is beyond the scope of this work. In section 2.1 we will review the PT back-

ground and explain why it already breaks supersymmetry. It will be shown, however, that

this does not lead to uplifting as the cosmological constant remains zero (this is explained

in section 2.2). Only after we embed D7-branes in this background (see section 2.3) we can

observe the D-terms and uplift our potential. This calculation is performed in section 2.4.

An alternative view on the problem is given by lifting the whole scenario to F-theory in

section 3. We resolve some of the subtleties associated with the lift, namely the existence

of seven branes, the existence of non-primitive fluxes and the existence of a compact geom-

etry. We show that the type IIB seven branes are directly related to certain normalisable

harmonic forms and we construct them explicitly. These forms are the ones that contribute

to the second cohomology of the compact manifold. We argue that the compact geometry

cannot be a Calabi-Yau manifold by demonstrating that the first Chern class does not

vanish. We show that the non-Kählerity can be attributed to the existence of a three form

in the dual type IIA theory. We also argue that the IIB (1,2) forms can combine with

the non-Kählerity to form a unique (2,2) form in the M-theory lift of our background. In

section 4 we sketch a possible inflationary model from our scenario, and point out a process

of restoring supersymmetry at the end of inflation. In a companion paper we will analyse

detailed inflationary dynamics in this background.

2 The IIB picture: D7-branes on the resolved conifold

In the following we describe the basic geometry of the resolved conifold background and

then show how branes and susy-breaking fluxes can be consistently added without violating

the equations of motion.

2.1 The warped resolved conifold with fluxes

Similar to the Klebanov-Strassler model, a warped geometry can be created by fluxes in the

resolved conifold background, see appendix A for a discussion of this geometry and defini-

tion of coordinates. The full supergravity solution for the resolved conifold was derived by

Pando-Zayas and Tseytlin [16] (PT) and includes non-trivial RR and NS flux with constant

dilaton. It can be understood as placing a stack of fractional D3-branes (i.e. D5-branes

that wrap a 2-cycle) in this background. The ten-dimensional metric is found to be

ds210 = h−1/2(ρ) ηµνdx
µdxν + h1/2(ρ) ds26 , (2.1)

where ds26 refers to the resolved conifold metric given by

ds26 = κ(ρ)−1 dρ2 +
κ(ρ)

9
ρ2
(
dψ + cos θ1 dφ1 + cos θ2 dφ2

)2

+
ρ2

6

(
dθ2

1 + sin2 θ1 dφ
2
1

)
+
ρ2 + 6a2

6

(
dθ2

2 + sin2 θ2 dφ
2
2

)
. (2.2)
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Note that as ρ→ 0, the (θ2, φ2) sphere remains finite, whereas for the singular conifold both

(θi, φi) spheres scale with ρ2/6. The parameter a is called the resolution parameter be-

cause it determines the size of the resolved 2-sphere. This asymmetry in the geometry also

determines an asymmetry in the flux on the 2-cycles and is the source of supersymmetry

breaking. The 3-form fluxes in this background are1

H3 = dρ ∧ [f ′1(ρ) dθ1 ∧ sin θ1 dφ1 + f ′2(ρ) dθ2 ∧ sin θ2 dφ2] (2.3)

F3 = Peψ ∧ (dθ1 ∧ sin θ1 dφ1 − dθ2 ∧ sin θ2 dφ2) (2.4)

and the self-dual 5-form flux is given by

F5 = F + ∗F , F = K(ρ) eψ ∧ dθ1 ∧ sin θ1 dφ1 ∧ dθ2 ∧ sin θ2 dφ2 , (2.5)

where

f1(ρ) =
3

2
gsP ln(ρ2 + 9a2)

f2(ρ) =
1

6
gsP

(
36a2

ρ2
− ln[ρ16(ρ2 + 9a2)]

)
(2.6)

K(ρ) = Q− 1

3
gsP

2

(
18a2

ρ2
− ln[ρ8(ρ2 + 9a2)5]

)

and where P is proportional to the number of fractional D3-branes and Q proportional to

the number of regular D3-branes, and both are proportional to α′.

It was pointed out in [25] and confirmed in [21] that this solution breaks supersymme-

try. The reason lies in the fact that the 3-form flux has not only a (2,1), but also a (1,2)

part. It is, nevertheless, a supergravity solution because the 3-form flux G3 = F3 − iH3

obeys the imaginary self-duality condition ∗6G3 = iG3. Supersymmetry further requires

G3 to be of type (2,1) and primitive [26, 27], i.e. that it satisfy G3 ∧ J = 0.

Let us briefly review the argument. Using (A.15) we can rewrite the 3-form flux in

terms of vielbeins

G3 = − 18P

ρ3
√
κ

(e2 ∧ e3 ∧ e4 + i e1 ∧ e5 ∧ e6) +
18P (e2 ∧ e5 ∧ e6 + i e1 ∧ e3 ∧ e4)

ρ
√
ρ2 + 6a2

√
ρ2 + 9a2

. (2.7)

The vielbein notation is extremely convenient to see that this flux is indeed imaginary

self-dual. The Hodge dual is simply found by

∗6 (ei1 ∧ ei2 ∧ . . . ∧ eik) = ǫ
ik+1...i6

i1i2...ik
eik+1

∧ . . . ∧ ei6

and does not involve any factors of
√
g. We use the convention that ǫ123456 = ǫ 456

123 = 1.

With the complex structure (A.17) the PT flux becomes

G3 =
−9P

ρ3
√
ρ2 + 6a2

√
ρ2 + 9a2

[
(ρ2 + 3a2) (E1 ∧ E2 ∧ E2 − E1 ∧ E3 ∧ E3)

+ 3a2 (E2 ∧ E1 ∧ E2 + E3 ∧ E1 ∧ E3)
]
. (2.8)

1There is a typo in eq. (4.3) in [16], concerning the sign of F3.
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We make several observations: This flux is neither primitive2 nor is it of type (2,1). It has a

(1,2) and a (2,1) part, which cannot be avoided by a different choice of complex structure.

Consequently, this flux indeed breaks supersymmetry.

We also observe that, in the limit a → 0, the (1,2) part vanishes, the flux becomes

primitive, and we recover the singular conifold solution. This indicates that the resolution

forbids a supersymmetric supergravity solution, i.e. the blow-up of a nontrivial 2-cycle in

a conifold geometry can lead to supersymmetry breaking. We will exploit this fact to

our advantage.

2.2 The scalar potential and supersymmetry

We have just argued that the non-primitive (1,2) flux breaks supersymmetry. One might

therefore wonder if it can be used to uplift our potential to a positive vacuum. The answer

is no because the scalar potential always remains zero when the flux is ISD, regardless of

whether or not the vacuum breaks supersymmetry. Let us explain this in more detail (see

also appendix (A.2) of [24] and [27]). First we would like to remind the reader that the

ISD requirement for G3 stems from the SuGra equations of motion in compactifications

on conformal CY’s, as first pointed out by [23, 28] and later on elaborated by GKP [24],

whereas the explicit susy variations lead to J ∧G3 = 0 (primitivity) and G3 being purely

(2,1). So the PT flux breaks susy “in two ways”, by being (1,2) and by being non-primitive,

which is actually one and the same statement for ISD fluxes.

The scalar potential of N = 1 4d supergravity can be derived by direct dimensional

reduction of the IIB SuGra action. It is induced by the flux kinetic term

SG = − 1

4κ2
10

∫
G3 ∧ ∗G3

Im τ
, (2.9)

where the Hodge star is taken on the internal manifold, so this integral runs over the six

internal dimensions. This can be rewritten as a potential plus a topological term, if we

split G3 in its ISD and anti-ISD part

G3 =GISD +GAISD , G(A)ISD ≡ 1

2

(
G3 ± i ∗G3

)

∗GISD = iGISD , ∗GAISD = − iGAISD . (2.10)

Then this part of the action becomes

SG = − 1

2κ2
10

∫
GAISD ∧ ∗GAISD

Imτ
+

i

4κ2
10

∫
G3 ∧G3

Imτ

= −V −Nflux . (2.11)

The second term is topological and independent of the moduli. In a compact setup it

will be cancelled by the localised charges, if we use the tadpole cancellation condition∫
H3 ∧ F3 = −2κ2

10T3Q
loc
3 . (The D7-branes also carry an effective D3-charge given by

2Since J = ı

2

P

i
(Ei ∧Ei) it follows immediately that J ∧G3 has a nonvanishing E2 ∧E3 ∧E1 ∧E2 ∧E3

part that is proportional to a2.
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−χ(X)/24, the Euler character of the corresponding F-theory 4-fold.) This condition is of

course relaxed in a non-compact space, but we want to keep the point of view that we can

consistently compactify our background in an F-theory framework. The potential for the

moduli is given by the anti-ISD fluxes only3

V =
1

2κ2
10

∫
GAISD ∧ ∗GAISD

Imτ
. (2.12)

This means that the potential vanishes identically for ISD flux and the ensuing condition

∗G3 = iG3 fixes almost all moduli, namely complex structure moduli and dilaton.

If the basis of the complex structure moduli space is given by the holomorphic 3-form

Ω (which is AISD) and h2,1 primitive ISD (2,1) forms χi, the flux G3 is expanded in this

basis. Upon this expansion, the scalar potential takes a form that only depends on the

coefficients of the expansion of the anti-ISD part

GAISD
3 = g1 Ω + gi2 χ̄i (2.13)

and becomes

V =
i
∫
G3 ∧ Ω

∫
G3 ∧ Ω +

∫
G3 ∧ χi

∫
G3 ∧ χi

2 Imτ κ2
10

∫
Ω ∧ Ω

. (2.14)

This is identical to the standard scalar potential of N = 1 4d supergravity in terms on the

superpotential W and the Kähler potential K

V = eK

(
∑

α

|DαW |2 − 3|W |2
)
, (2.15)

if the superpotential is the usual Gukov-Vafa-Witten [30] potential

W =

∫
G3 ∧ Ω (2.16)

and the Kähler potential is given by K = − log(−i
∫

Ω∧Ω̄)−log[−i(τ−τ̄)]−3 log[−i(σ−σ̄)],

where σ is the Kähler modulus associated with the overall volume of the Calabi-Yau. The

(2,1) forms χi enter through the derivative of Ω, because the derivative of Ω with respect

to a complex structure parameter zj has a (3,0) and a (2,1) part (see e.g. [31])

∂Ω

∂zj
= kj(z, z̄)Ω

(3,0) + χ
(2,1)
j . (2.17)

In (2.15) the index α runs over all Kähler moduli ka, complex structure moduli zi and the

dilaton Φ. The Kähler covariant derivate is DαW = ∂αW +W ∂αK. For no-scale models

one finds a cancellation between the covariant derivatives w.r.t. the Kähler moduli against

the last term, so that

V = eK
∑

i

|DiW |2 , (2.18)

3For a more precise treatment that also includes warping, the Einstein term and the F5 flux term

see [29]. The qualitative result remains unchanged. It was actually shown that the GVW superpotential is

not influenced by warping.
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where now i only runs over the complex structure moduli and Φ only. It is therefore easy

to see that even a minimum with V = 0 can have broken supersymmetry, as Dka
W can

be nonvanishing.

Now let us turn to the question why the non-susy (1,2) flux does not lead to uplifting.

It is ISD, so obviously the potential (2.12) remains zero. But how can we understand

this from the point of view of the SuGra potential as expressed in (2.15)? Clearly, there

is no F-term associated to derivatives w.r.t. the Kähler parameter or the dilaton, as the

superpotential (2.16) does not depend on them. But what about an F-term Dzj
W ? Let us

for a moment assume we are still talking about a CY, although (1,2) ISD flux cannot exist

on a compact CY. So we still assume our moduli space to be parameterised by Ω and χi.

Let us furthermore assume the superpotential is still given by (2.16). Then it is easy to see

that there could be a non-vanishing derivative of W w.r.t. a complex structure parameter.

Using (2.17) one finds

∂zi
W = ki(z, z̄)W +

∫
G3 ∧ χ(2,1)

i , (2.19)

which could be nonvanishing for G3 of type (1,2). But (1,2) flux can only be ISD if it is

proportional to the Kähler form, G(1,2) = J (1,1) ∧ m̄(0,1), so this becomes

∂zi
W =

∫
J (1,1) ∧ m̄(0,1) ∧ χ(2,1)

i = 0 (2.20)

when we use the fact that χi is primitive, J (1,1)∧χ(2,1)
i = 0. If there is no (0,3) part present,

W vanishes identically and

Dzi
W = ∂zi

W +W ∂zi
K = 0 , (2.21)

so all F-terms vanish in our setup. Note that in the non-compact scenario the term −3|W |2
is absent (we neglected MP in above formulae). However, our argument does not depend

on the no-scale structure of the model. W is identically zero, because we don’t have any

(0,3) flux turned on, and all F-terms vanish individually.

This discussion has two weak points: First of all, we can no longer assume our moduli

space is only parameterised by Ω and χi if we allow for a (1,2) flux. Once we compactify,

there has to be a basis for the one-form m(1,0) as well (for simplicity of the argument let us

assume there is only one such 1-form in the following). This would modify the derivative

of Ω, the natural guess respecting the (3,0)+(2,1) structure4 being

∂Ω

∂zj

= kj(z, z̄)Ω
(3,0) + χ

(2,1)
j + νjJ

(1,1) ∧m(1,0) . (2.22)

If we keep using the GVW superpotential, we get an additional term

∂zj
W =

∫
G3 ∧ (νjJ

(1,1) ∧m(1,0)) =

∫
J (1,1) ∧ m̄(0,1) ∧ νjJ (1,1) ∧m(1,0) , (2.23)

4In the case of a complex manifold, the original derivation [31] holds and (2.22) would not acquire an

extra term.
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which will in general be non-zero for the type of G3 flux we have turned on. However,

the superpotential will also change since we have to expand G3 in this new basis as well.

Equation (2.13) changes to

GAISD
3 = g1 Ω + gi2 χ̄i + g3 J ∧ m̄ . (2.24)

Plugging this into the scalar potential (2.12) does not give (2.14), but additional terms due

to m̄. To bring this into the form of the standard SuGra F-term potential we would need

to know the metric on the new moduli space, which does not correspond to a CY anymore.

Finding the relevant moduli space would allow one to see how W changes. It is likely that

it will contain terms with J , and thus will introduce a dependence on Kähler structure

moduli. This breaks the no-scale structure and we have to re-examine the cancellation

between Dka
W and W . Regardless, we know that the combination

∑
α |DαW |2 − 3|W |2

has to vanish, as (2.12) remains valid. ISD flux cannot give a non-zero potential.

In addition, it is worth noting that we may have to modify the superpotential as to

include a term enforcing primitivity. In the compact CY setting this is already taken care

of, because an ISD (2,1) form is always primitive. The ISD (1,2) form, on the other hand,

is not. If we allow for this type of flux, we should introduce a term that reproduces the

primitivity condition as a susy condition DW = 0. This was already considered in an

M/F-theory context [30], where it was conjectured that

W̃ =

∫
J ∧ J ∧G4 . (2.25)

Then DJW̃ = 0 leads to the primitivity condition J ∧ G4 = 0 for the 4-form flux on the

8-manifold. It is not obvious how this term reduces to type IIB. It will not give rise to

a superpotential, but rather to a D-term, as it depends on the Kähler moduli and not

the complex structure moduli. For a K3 × K3 orientifold, the dimensional reduction of

W̃ has been carried out [10] and the result agrees with that obtained in type IIB from a

D7-worldvolume analysis [11]. Also in the F-theory setup, only the non-primitive fluxes on

the D7-branes create a D-term in the effective four-dimensional theory. We can therefore

safely conclude that the supersymmetry breaking due to the (1,2) flux will not be visible

in the scalar potential that appears from the reduction of the IIB bulk action.

There is also an enlightening discussion in [32] where it was illustrated that, from

an F-theory point of view, a flux of type (0,4), (4,0) or proportional to J ∧ J can break

supersymmetry without generating a cosmological constant. It is the latter case that

corresponds to non-primitive ISD flux in IIB. We do not have an explicit map between

these two types of fluxes, but we give some arguments in section 3.3. It should be clear

that ISD flux lifts to self-dual flux in F-theory and that the non-primitivity property is

preserved in this lift.

To summarise, the supersymmetry breaking associated to non-primitive (1,2) fluxes

will not give rise to an F-term uplift, as the scalar potential generated by the flux in the

IIB bulk action remains zero, so does the superpotential if we rely on the CY property of the

resolved conifold. We can, however, in the spirit of KKLMMT allow a non-vanishing W0

that is created by fluxes in the compact bulk that is glued to the throat. It does not appear
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in the scalar potential because of the no-scale structure of these models (but it will, once

the no-scale structure is broken by non-perturbative effects or because the superpotential

is not simply the one from GVW [30] anymore). The (1,2) flux gives rise to an “auxiliary

D-term” [27], which is absent in the 4d scalar potential but can be understood as an FI-

term from an anomalous U(1) on the D7 worldvolume (the pullback of the B-field on the

D7 worldvolume enters into the DBI action). Let us therefore turn to the question how to

embed a D7 in the resolved conifold background; we will then turn to the computation of

the D-terms in section 2.4.

2.3 Ouyang embedding of D7-branes on the resolved conifold

We consider now that addition of D7-branes to the PT background. In [22], a holomorphic

embedding of D7-branes into the singular conifold background was presented. Such an

embedding is necessary to preserve supersymmetry on the submanifold, although not alone

sufficient (complete BPS conditions are found in [33, 34]). The particular holomorphic

embedding chosen in [22] is described by

z = µ2 , (2.26)

where z is one of the holomorphic coordinates defined in (A.8). Although we already know

that the PT background breaks supersymmetry, we will use precisely the same embedding

(we consider only µ = 0 for simplicity). It is worth emphasising that this embedding,

first considered on the singular conifold, remains holomorphic on the resolved conifold

(details are found in appendix B). As a consistency check we should always be able to

recover the original singular solution in the limit a→ 0. This singular solution from [22] is

actually not supersymmetric, though one might have expected otherwise. The embedding

is holomorphic, but supersymmetry requires in addition that the pullback of the flux is

(1,1) and primitive on the cycle wrapped by the D7. The latter condition is not met by

the singular Ouyang embedding in [22]. It might be possible to restore supersymmetry by

turning on appropriate gauge flux.5 However, as we will demonstrate in section 2.4, this

susy breaking in [22] does not manifest itself in a D-term.

The D7-brane induces a non-trivial axion-dilaton

τ =
i

gs
+

N

2πi
log z , (2.27)

where N is the number of embedded D7-branes. As pointed out in [4], there is an additional

running of the dilaton when the two-cycle in the “resolved warped deformed conifold” is

blown up. However, as we focus on the limit where the geometry looks like the resolved

conifold (i.e. b→ 0 in (1.1)), we recover the PT supergravity solution, which has a constant

dilaton. We will therefore concentrate on the running of the dilaton (2.27) as generated

by the D7-brane embedding. This running dilaton was not taken into account by [2],

where the D7 is embedded in the singular conifold and a D3-brane is attracted towards an

anti-D3 at the bottom of the throat. The given reasoning is that the dilaton contribution

5P. Ouyang, G. Shiu et al, work in progress.
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should be exactly cancelled by a change in geometry when approaching the supersymmetric

limit (if the D7-brane embedding is supersymmetric and the D3-brane preserves the same

supersymmetry, the scenario has to be stable when the susy-breaking anti-D3 is removed).

Our setup, on the other hand, is non-supersymmetric from the start and therefore we

are not led to conclude that the running of the dilaton should vanish from a similar line

of argument. It will, however, be suppressed by the susy breaking scale. For a viable

inflationary scenario one should rather use the resolved warped deformed conifold; its

running dilaton will be the primary reason for a D3 to move towards the tip.6 In this

section we simply want to study the backreaction of the dilaton onto the background.

We determine the change the dilaton induces in the other fluxes and the warp factor at

linear order gsN , see appendix B for details of the calculation. We neglect any backreaction

on the geometry beyond a change in the warp factor, i.e. we will assume the manifold

remains a conformal resolved conifold. A distortion of the conifold with Ouyang embedding

has been studied in e.g. [35], where the D7-branes are smeared over the angular directions,

such that the dilaton does not exhibit the behaviour (2.27), but runs as log ρ only. Instead

of choosing this approximation we will rather attempt to make some statement about the

expected manifold from an F-theory perspective. We first embed D7-branes in the non-susy

PT setup, neglecting any back-reaction on the internal manifold and then lift the resulting

warped resolved conifold with non-trivial axion-dilaton to F-theory. The resulting four-fold

is in general not a fibration over a Calabi-Yau three-fold, even in the orientifold limit (see

section 3 for this discussion). Solving the full equations of motion would require us to

determine the Ricci tensor of the internal manifold from

Rmn =
∂mτ∂nτ̄ + ∂nτ∂mτ̄

4(Im τ)2
+

(
TD7
mn −

1

8
gmnT

D7

)
, (2.28)

where TD7
mn is the energy momentum tensor of the D7 evaluated in our non-trivial back-

ground. However, we can rely on the fact that in a consistent F-theory compactification

this equation is automatically satisfied [24] when several stacks of D7-branes and O7-planes

are taken into account. An actual computation of the r.h.s. of (2.28) is generically difficult.

This is because to compute Tmn of the D7 branes we would first need to evaluate the non-

abelian Born-Infeld action for N D7 branes, and secondly extend the action to curved space

because the D7 branes wrap non-trivial surfaces in the internal space. We have not been

able to perform this direct computation (because of the absence of adequate technology),

but we give an indirect confirmation of our background from F-theory in the next section.

Consider first the Bianchi identity, which in leading order becomes (H3 indicates the

unmodified NS flux from (2.3), whereas the hat indicates the corrected flux at leading order)

dĜ3 = dF̂3 − dτ ∧ Ĥ3 − τ ∧ dĤ3 = −dτ ∧H3 + O((gsN)2) (2.29)

= −
(
N

2πi

dz

z

)
∧
(
df1(ρ) ∧ dθ1 ∧ sin θ1 dφ1 + df2(ρ) ∧ dθ2 ∧ sin θ2 dφ2

)
+ O((gsN)2) .

6Such a scenario has been studied in [4], where the running dilaton due to a blown-up 2-cycle was

parameterized by δN(a) log z, where a is a small resolution. This analysis was based on the original

Ouyang embedding [22], which we will now reconsider for the resolved conifold.
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In order to find a 3-form flux that obeys this Bianchi identity, we make an ansatz

Ĝ3 =
∑

αi ηi (2.30)

where {ηi} is a basis of imaginary self-dual (ISD) 3-forms on the resolved conifold. In

accordance with the observations about the cohomology of G3, we do not restrict ourselves

to (2,1) forms, but allow for ηi of (1,2) cohomology as well. With the convention (A.17)

we define

η1 = E1 ∧ E2 ∧ E2 −E1 ∧ E3 ∧ E3

η2 = E1 ∧ E2 ∧ E3 −E1 ∧ E3 ∧ E2

η3 = E1 ∧ E2 ∧ E1 +E2 ∧ E3 ∧ E3

η4 = E1 ∧ E3 ∧ E1 −E2 ∧ E3 ∧ E2

η5 = E2 ∧ E3 ∧ E1 (2.31)

η6 = E1 ∧ E1 ∧ E3 + E2 ∧ E2 ∧ E3

η7 = E1 ∧ E1 ∧ E2 − E3 ∧ E2 ∧ E3

η8 = E2 ∧ E1 ∧ E2 + E3 ∧ E1 ∧ E3

Note that there are five (2,1) ISD forms, but only three (1,2) ISD forms. This is due to

the fact that a form of type (1,2) can only be ISD if it is proportional to J .

Not surprisingly, there is no solution to the Bianchi identity involving only the (2,1)

forms. We find a particular solution in terms of only four of above eight 3-forms

P3 = α1(ρ) η1 + e−iψ/2α3(ρ, θ1) η3 + e−iψ/2α4(ρ, θ2) η4 + α8(ρ) η8 , (2.32)

with

α1 =
3gsNP

8πρ3

[
18a2 − 36(ρ2 + 3a2) log

( ρ
a

)
+ (10ρ2 + 72a2) log

(
ρ2

ρ2+9a2

)]

√
ρ2 + 6a2

√
ρ2 + 9a2

α3 = −3
√

6gsNP
72a4 − 3ρ4 + a2ρ2(log(ρ2 + 9a2) − 56 log ρ)

8πρ3(ρ2 + 6a2)2
cot

θ1
2

α4 = −9
√

6gsNP
ρ2 − 9a2 log(ρ2 + 9a2)

8πρ4
√
ρ2 + 6a2

cot
θ2
2

(2.33)

α8 =
3a2

ρ2 + 3a2

[
3gsNP

−9(ρ2 + 4a2) + 28ρ2 log ρ+ (81a2 + 13ρ2) log(ρ2 + 9a2)

8πρ3
√
ρ2 + 6a2

√
ρ2 + 9a2

+ α1

]
.

Note that a8 is implicitly given by α1. Furthermore, we find a homogeneous solution

Ghom3 = β1(z, ρ) η1+e−iψ/2β3(ρ, θ1) η3+e−iψ/2β4(ρ, θ2) η4+e−iψβ5(ρ, θ1, θ2) η5+β8(z, ρ) η8 ,

(2.34)

with βi given in (B.10). This solution has the right singularity structure at z = 0 and

ρ = 0, but it does not transform correctly under SL(2,Z). When ψ → ψ + 4π, the axion-

dilaton transforms as τ → τ +N . This would imply that G3 has to be invariant under this
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shift, which is true for the particular solution, but not the homogeneous one. We therefore

conclude that the correction to the 3-form flux, which is in general a linear combination of

P3 and Ghom3 , is given by (2.32) only

Ĝ3 = G3 + P3 . (2.35)

Note that in terms of ηi the original 3-form flux was given by

G3 = −9P
(ρ2 + 3a2) η1 + 3a2 η8

ρ3
√
ρ2 + 6a2

√
ρ2 + 9a2

. (2.36)

We can now determine the change in the remaining fluxes and the warp factor, at least to

linear order in (gsN). We find the corrected RR and NS flux from the real and imaginary

part of Ĝ3, respectively

Ĥ3 =
Ĝ3 − Ĝ3

τ − τ̄
and F̃3 =

Ĝ3 + Ĝ3

2
. (2.37)

This results in the closed NS-NS 3-form

Ĥ3 = dρ ∧ eψ ∧ (c1 dθ1 + c2 dθ2) + dρ ∧ (c3 sin θ1 dθ1 ∧ dφ1 − c4 sin θ2 dθ2 ∧ dφ2)

+

(
ρ2 + 6a2

2ρ
c1 sin θ1 dφ1 −

ρ

2
c2 sin θ2 dφ2

)
∧ dθ1 ∧ dθ2 (2.38)

and the non-closed RR 3-form (note that F̃3 = F̂3 − C0Ĥ3, where F̂3 is closed)

F̃3 = − 1

gs
dρ ∧ eψ ∧ (c1 sin θ1 dφ1 + c2 sin θ2 dφ2)

+
1

gs
eψ ∧ (c5 sin θ1 dθ1 ∧ dφ1 − c6 sin θ2 dθ2 ∧ dφ2)

− 1

gs
sin θ1 sin θ2

(
ρ

2
c2 dθ1 −

ρ2 + 6a2

2ρ
c1 dθ2

)
∧ dφ1 ∧ dφ2 , (2.39)

see (B.15) for the coefficients ci. This allows us to write the NS 2-form potential (dB2 = Ĥ3)

B2 =

(
b1(ρ) cot

θ1
2
dθ1 + b2(r) cot

θ2
2
dθ2

)
∧ eψ (2.40)

+

[
3g2
sNP

4π

(
1 + log(ρ2 + 9a2)

)
log

(
sin

θ1
2

sin
θ2
2

)
+ b3(ρ)

]
sin θ1 dθ1 ∧ dφ1

−
[
g2
sNP

12πρ2

(
−36a2 + 9ρ2 + 16ρ2 log ρ+ ρ2 log(ρ2 + 9a2)

)
log

(
sin

θ1
2

sin
θ2
2

)
+ b4(ρ)

]

× sin θ2 dθ2 ∧ dφ2 ,

where the coefficients are given in (B.17). This mirrors closely the result for the singular

conifold [22] and we can indeed show that we produce this result in the a → 0 limit.

Away from the singular limit, we find an asymmetry between the (θ1, φ1) and (θ2, φ2)

spheres, which was to be expected since our manifold (the resolved conifold or its more

complicated cousin, the resolved warped deformed conifold) does not have the Z2 symmetry
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that exchanges the two 2-spheres in the singular conifold geometry. The lesser degree of

symmetry is naturally also expressed in the fluxes.

The five-form flux is as usual given by (∗̃10 indicates the Hodge star on the full 10-

dimensional warped space)

F̂5 = (1 + ∗̃10)(dĥ
−1 ∧ d4x) , (2.41)

which requires knowledge of the warp factor ĥ(ρ) that is consistent with these new fluxes.

In order to solve the supergravity equations of motion one requires

ĥ2 ∆ĥ−1 − 2ĥ3 ∂mĥ
−1 ∂nĥ

−1gmn = −∆ĥ = ∗6

(
Ĝ3 ∧ Ĝ3

6(τ − τ)

)
=

1

6
∗6 dF̂5 , (2.42)

where ∆ is the Laplacian on the unwarped resolved conifold and all indices are raised

and lowered with the unwarped metric. After some simplifications the Laplacian on the

resolved conifold takes the form

∆ĥ = κ∂2
ρ ĥ+

5ρ2 + 27a2

ρ(ρ2 + 6a2)
∂ρĥ+

6

ρ2

(
∂2
θ1 ĥ+ cot θ1 ∂θ1 ĥ

)
+

6

ρ2 + 6a2

(
∂2
θ2 ĥ+ cot θ2 ∂θ2 ĥ

)
.

This should be evaluated in linear order in N, since we solved the SuGra eom for the fluxes

also in linear order. As the the right hand side of

1

6
∗6 dF̂5 =

54gsP

πρ6(ρ2 + 6a2)(ρ2 + 9a2)

{
12πρ4 + 9a2ρ2(8π − gsN) + 54a4(4π + gsN)

+gsN

[
(25ρ4 + 66a2ρ2 − 54a2) log ρ+ (10ρ4 + 102a2ρ2 + 189a4) log(ρ2 + 9a2)

+6(ρ4 + 6a2ρ2 + 18a4) log

(
sin

θ1
2

sin
θ2
2

)]}
(2.43)

appears sufficiently complicated, we need to employ some simplification. The obvious choice
is to consider ρ≫ a, i.e. we only trust our solution sufficiently far from the tip. As in the
limit a→ 0 we recover the singular conifold setup, we know our solution takes the form [22]

ĥ(ρ, θ1, θ2)= 1+
L4

r4

{
1+

24gsP
2

πα′Q
log ρ

[
1+

3gsN

2πα′

(
log ρ+

1

2

)
+
gsN

2πα′
log

(
sin

θ1
2

sin
θ2
2

)]}
+O

(
a2

ρ2

)

(2.44)

with L4 = 27πgsα
′Q/4. Apart from the a2/ρ2-correction, this is the same result as for the

singular conifold [22]. We have not been able to find an analytic solution at higher order,

but considering that most models work with even cruder approximations of the warp factor

(i.e. h(r) ∼ log r/r4), we believe this should suffice.

2.4 D-terms from non-primitive background flux on D7-branes

Soft supersymmetry breaking via D-terms on D7-branes has been considered in [9], and was

later applied to more realistic type IIB orientifolds [11, 12] or their F-theory lift [10, 13] (see

also [36] for a IIA scenario); the most general study for generalised CYs has appeared in [37].
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The established consensus is that non-primitive flux on the D7-worldvolume gives rise to

D-terms in the effective 4-dimensional theory, which can only under certain conditions

remain non-zero in the vacuum. One way to phrase the necessary condition is to require

that the 4-cycle wrapped by the D7-branes admits non-trivial 2-forms that become trivial

in the ambient Calabi-Yau, i.e. the H2-cohomology on the four-cycle is bigger than just

the pullback of H2(CY ). (Equivalently [11] states that the 4-cycle needs to intersect its

orientifold image over a 2-cycle that supports non-trivial flux. The same is true in the

case of two stacks [12] intersecting over a 2-cycle.) This condition can be satisfied for the

Ouyang embedding in the µ 6= 0 case: The resolved conifold admits only one non-trivial

2-cycle, the sphere that remains finite at the tip. The 4-cycle that the D7 wraps, on the

other hand, can also have a non-trivial cycle spanned by (θ1, φ1), if the D7 in the Ouyang

embedding do not reach all the way to the bottom of the throat. On the D7, this cycle will

never shrink completely. Nevertheless, we are mostly concerned with the case µ = 0 here.

In contrast to [11, 12] we consider the pullback of a background field with non-vanishing

fieldstrength, not the zero mode fluctuations, i.e. we do not expand the worldvolume flux

in a basis of H2. This gives rise to a D-term that depends on the overall volume of

the manifold and the resolution parameter a. Though an orientifold will be necessary to

consistently compactify our background, we will not specify any orientifold action here, as

we do not know a specific compactification our background.

Following the derivation in [12, 37], we extract the D-terms from the DBI action. Sup-

pose our stack of N D7-branes wraps a 4-cycle Σ as specified by the Ouyang embedding in

section 2.3. The full DBI action for the 8-dimensional worldvolume (in string frame) reads

SD7 = −µ7

∫

Σ×M4

d8ξ e−Φ
√

|ǧ + B̌ − 2πα′F | (2.45)

where the symbol ˇ indicates the pullback of the metric and the NS field onto the D7, F

is the worldvolume gauge flux. With this product ansatz for the spacetime this expres-

sion becomes

SD7 = −µ7

∫
d4x e−Φ

√
|ǧ4|

√∣∣1 + 2πα′ǧ−1
4 F4

∣∣Γ , (2.46)

where g4 and F4 indicate the 4-dimensional part of the metric and gauge flux and one defines

Γ =

∫

Σ
d4ξ

√
|ǧΣ + F| , (2.47)

where we have introduced F = B̌ − 2πα′F . In the following, the pullback is always un-

derstood as onto the 4-cycle Σ. We do not consider any gauge fields along the external

space M4. The quantity (2.47) is the main parameter for the D-terms. Expanding the full

action (2.45) at low energies yields the potential contribution

VD7 = µ7e
3ΦV−2Γ , (2.48)

where the volume V of the resolved conifold is defined as

V =
1

6

∫

Y
J ∧ J ∧ J =

(4π)2

108

∫ R

0
ρ3(ρ2 + 6a2) dρ =

8π3

81
R4(R2 + 9a2) . (2.49)
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This integral has to be regularised by an explicit cut-off, as we study the non-compact case.

Simply cutting off the radial direction does probably destroy the holomorphicity condition,

but we will ignore this subtlety here.

One can write [12] Γ = Γ̃e−iζ = |Γ̃|ei(ζ̃−ζ), where ζ is determined from the BPS

calibration condition and

Γ̃ =
1

2

∫

Σ

(
J̌ ∧ J̌ −F ∧ F

)
+ i

∫

Σ
J̌ ∧ F . (2.50)

Then the condition for the D7 to preserve the same supersymmetry as the O7 corresponds

to ζ = ζ̃ = 0, or equivalently ImΓ̃ = 0. Allowing for a small supersymmetry breaking one

expands the D7-potential (2.48) in ImΓ̃ ≪ ReΓ̃ and finds

VD7 = µ7e
3ΦV−2Γ = µ7e

3ΦV−2
√

(ReΓ̃)2 + (ImΓ̃)2

= µ7e
3ΦV−2 ReΓ̃ +

1

2
µ7e

3ΦV−2 (ImΓ̃)2

ReΓ̃
. (2.51)

The first term in this expansion will be cancelled by the tadpole cancellation condition in a

consistent compactification. The second term is interperted as the susy-breaking D-term.

The real and imaginary part of Γ̃ are easily read off from (2.47) (the integrals are real) and

can be calculated for our explicit case at hand. All we need to know is the pullback of the

Kähler form onto the 4-cycle and the worldvolume flux F .

We would like to consider the simple case such that

B̌ 6= 0 , F = 0 , (2.52)

as we have an explicit solution of this form. There could be gauge flux on the D7-brane

to could restore supersymmetry in the a → 0 limit. It is noted again that to preserve

supersymmetry, holomorphicity is not enough. One also needs the worldvolume flux to be

of pure (1,1) type and primitive [33]. The reason that it is so difficult to achieve non-trivial

D-terms with closed B̌ is that F could always cancel the non-primitive part of B̌ [11],

unless some non-trivial topological conditions are met.

In calculating the D-terms, we must treat the D7 as a probe. Thus the B-field that is

pulled back is not the one we calculated in (2.40), but the original PT solution

B = f1(ρ) sin θ1 dθ1 ∧ dφ1 + f2(ρ) sin θ2 dθ2 ∧ dφ2 , (2.53)

where f1 and f2 were defined in (2.6). The embedding z = 0 we use has actually 2 branches,

since

z = 0 =
(
9a2ρ4 + ρ6

)1/4
sin

θ1
2

sin
θ2
2

(2.54)

can be satisfied by either θ1 = 0 or θ2 = 0. This implies that also φ1 =fixed or φ2 =fixed,

as θi being zero refers to the pole of one of the 2-spheres where the circle described by φi
collapses. The full holomorphic cycle is then a sum over these 2 branches.

Consider the 2 four-cycles Σ1 = (ρ, ψ, φ1, θ1) and Σ2 = (ρ, ψ, φ2, θ2) that correspond

to the branches θ2 = 0 and θ1 = 0, respectively. The complex structure induced on them
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is actually a trivial pullback of the complex structure on the resolved conifold. Using the

complex vielbeins (A.17), we see that

Σ1 = (E1|θ2=0, E2) , Σ2 = (E1|θ1=0, E3) , (2.55)

where in E1|θ2=0 and E1|θ1=0 the imaginary part is truncated to

ImE1|θ2=0 =
ρ
√
κ

3
(dψ + cos θ1 dφ1) and ImE1|θ1=0 =

ρ
√
κ

3
(dψ + cos θ2 dφ2) ,

respectively. It is easy to show that the induced complex structure on the four-cycle still

allows for a closed Kähler form. With this observation we find the pullback of B onto

both branches

B̌|Σ1
=

−3i

ρ2
f1E2 ∧ Ē2 , B̌|Σ2

=
−3i

ρ2 + 6a2
f2E3 ∧ Ē3 , (2.56)

which turn out to be of type (1,1). But that does not mean they are primitive. In fact, as

we will see shortly, the pullback of B is not primitive on each individual branch, but in the

limit a→ 0 the D-term generated by them vanishes when summing over both branches. So

it appears that the Ouyang embedding in the singular conifold [22] breaks supersymmetry

due to this non-primitivity, but generates neither an F-term nor a D-term. Supersymmetry

could possibly be restored by choosing appropriate gauge flux, but we solved the equations

of motion only for the case F = 0, so we will keep working with this assumption. In

general, F would mix with the metric in the e.o.m., changing our original setup.

If we consider the B-field (2.40) that reflects the D7-backreaction, we find its pullback

onto Σ1 (the case of Σ2 is completely analogous)

B̌2|Σ1
= b1(ρ) cot

θ1
2
dθ1 ∧ (dψ + cos θ1 dφ1) (2.57)

+

[
3g2
sNP

4π

(
1 + log(ρ2 + 9a2)

)
log

(
sin

θ1
2

· 0
)

+ b3(ρ)

]
sin θ1 dθ1 ∧ dφ1 .

We encounter the usual problem that B contains terms with log z, so naturally we find a

log-divergent term if we pull back onto a cycle that is described by z = 0. However, this is

not our concern here. We just want to point out, that this B-field is not of pure (1,1) type

anymore, but rather contains (2,0) and (0,2) terms as well:

B̌2|Σ1
=

3
√

3i b1(ρ)

2ρ2
√

2κ(ρ)
cot

θ1
2

[
eiψ/2(E1 ∧ Ē2 − Ē1 ∧ Ē2) + e−iψ/2(E1 ∧ E2 + E2 ∧ Ē1)

]

− 3i

ρ2

[
3g2
sNP

4π

(
1 + log(ρ2 + 9a2)

)
log

(
sin

θ1
2

· 0
)

+ b3(ρ)

]
E2 ∧ Ē2 . (2.58)

For our considerations the probe approximation shall suffice. We could not obtain any

sensible result with the B-field (2.57) anyway, as we would have to integrate over the

divergent points θi = 0. Naturally, this is some kind of self-interaction and divergent.

Let us now turn to the calculation of the D-terms for the embedding µ = 0. The

crucial integral for the D-term coming from (2.50) is given by the pullbacks of J and B.
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We still need to give the pullback of J onto both branches:

J̌ |Σ1
=
ρ

3
dρ ∧ (dψ + cos θ1 dφ1) +

ρ2

6
sin θ1 dφ1 ∧ dθ1

J̌ |Σ2
=
ρ

3
dρ ∧ (dψ + cos θ2 dφ2) +

ρ2 + 6a2

6
sin θ2 dφ2 ∧ dθ2 . (2.59)

And we repeat the pull-back of B in terms of real coordinates:

B̌|Σ1
= f1(ρ) sin θ1 dθ1 ∧ dφ1 , B̌|Σ2

= f2(ρ) sin θ2 dθ2 ∧ dφ2 . (2.60)

The D-term is now obtained from ImΓ̃ in (2.50)

D =

∫

Σ1

J̌ |Σ1
∧ B̌|Σ1

+

∫

Σ2

J̌ |Σ2
∧ B̌|Σ2

=

∫

Σ1

ρ

3
f1 sin θ1 dρ ∧ dψ ∧ dθ1 ∧ φ1 +

∫

Σ2

ρ

3
f2 sin θ2 dρ ∧ dψ ∧ dθ2 ∧ φ2 . (2.61)

We see immediately that for the case f1 = −f2, i.e. the singular a → 0 limit of the KT

solution, the D-term vanishes after summing both cycles, even though the pullback of B

is non-primitive in this case. For the case a 6= 0 we can perform the integrals, again

introducing a cut-off R for the radial direction. We find

D =
32π2gsP

9

[
9a2 log(9 + a2) − (9a2 − 2R2) logR− (9a2 +R2) log(9a2 +R2)

]
. (2.62)

To obtain the full D-term potential, we also need ReΓ̃ from (2.50). Looking at the

pullbacks of the B-fields (2.56) we see that B̌ ∧ B̌ vanishes for both branches, so

ReΓ̃ =
1

2

∫

Σ1

J̌ |Σ1
∧ J̌ |Σ1

+
1

2

∫

Σ2

J̌ |Σ2
∧ J̌ |Σ2

=
4π2

9
R2(R2 + 6a2) . (2.63)

The total D-term potential then reads

VD7 =
1

2
µ7e

3ΦV−2 (ImΓ̃)2

ReΓ̃

=
59049µ7 e

3Φ

512π8

D2

R10(R2 + 6a2)(R2 + 9a2)2
(2.64)

with the D-term D from (2.62). In the probe approximation, Φ is just the constant back-

ground dilaton and can be set to zero. This is one of the main results of our paper. We find a

non-zero D-term created by non-primitive (1,2) flux when pulled back to non-primitive flux

on D7-branes. Their magnitude is highly suppressed in a large volume compactification.

It would be most desireable to find a consistent compactification for our setup, in which

we do not have to introduce a cut-off by hand that spoils holomorphicity. Let us stress

again that these (1,2) fluxes did not lead to the creation of a bulk cosmological constant,

because they are ISD. We would expect, however, a modification of the superpotential, i.e.

in general D-terms on D7-branes also create F-terms [10–12].
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We have so far neglected any zero modes. Once we study D3/D7 inflation, there will

also be degrees of freedom that become light when the two branes approach each other.

The D- and F-terms in this case have to be re-evaluated. As already outlined in the

beginning of this section, we believe that the conditions to have non-zero D-terms in the

vacuum (i.e. intersection over a two-cycle with non-trivial flux or a cohomology H2(Σ)

of the 4-cycle that is greater than the pullback of the CY cohomology H2(CY )) can be

met when µ 6= 0. For µ = 0 it appears rather the opposite: There is only one non-trivial

2-cycle in the resolved conifold, the blown-up (φ2, θ2)-sphere. With µ = 0, the cycle Σ1 is

topologically trivial (it contains the shrinking 2-sphere), the cycle Σ2 is not. However, once

we compactify we will introduce another cycle on which the (0,1) form is supported. This

should be in (ρ, ψ) direction, as G(1,2) ∼ J ∧ Ē1, and E1 extends along ρ and ψ. However,

from (2.60) we see that this 2-cycle does not support any flux.

We believe this puzzle might be clarified once the original Ouyang embedding in the

singular conifold background is made supersymmetric with appropriate gauge fluxes. Note

however, that there is an essential difference between the singular KT and the resolved PT

backgrounds: the B-field in the bulk is primitive, i.e. J ∧ J ∧ B = 0, for the first case but

not for the latter.

The next step would be to consider the embedding µ 6= 0. The integrals becomes

much more complicated and cannot be solved analytically. Only for the case a = 0 have

we been able to show by numerical integration that D = 0. For a 6= 0 the integrand’s

strong oscillatory behaviour has prevented us from finding a solution so far. Note that the

pullback of J and B is much more involved. We have to use the embedding equations

(ρ6 + 9a2ρ4) =

(
|µ2|

sin θ1
2 sin θ2

2

)4

, ψ = φ1 + φ2 + const . (2.65)

It is then tedious but straightforward to calculate the pullback

J̌αβ = ∂αy
m∂βy

n Jmn , (2.66)

where m,n = ρ, ψ, θ1, θ2, φ1, φ2 run over the whole 3-fold, whereas α, β = θ1, θ2, φ1, φ2

parameterise the 4-cycle. A similar formula gives the pullback of the NS field B̌. Note,

however, that the pullback will contain terms with (sin θi)
−1, which diverge at the integra-

tion boundaries θi = 0. For the case a = 0 this seems to be under control, for the resolved

case we cannot make any definite statement.

3 A view from F-theory

Now that we have more or less the complete type IIB picture, we should deviate to address

the F-theory [38] lift of our background. Studying F-theory lift has many advantages:

• It can give us a precise way to study the compact version of our background. Recall

that the background that we constructed is non-compact. The compact form of our

background can be formulated if we can find a compact four-fold associated with the

resolved conifold background.
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• It is directly related to M-theory by a S1 reduction [38]. In M-theory the structure

of the four-fold remains the same, but there are a few advantages. We can determine

the precise warped form of the metric [28, 39], the precise superpotential [30] and the

complete perturbative [40] and non-perturbative terms on the IIB seven branes.

3.1 Construction of the fourfold

With the above advantages in mind, we aim to determine the fourfold in F-theory and

study the subsequent properties associated with the fourfold in M-theory. The generic

structure of the fourfold can be of the following form:

ds2 = e2Aηµνdx
µdxν + e2Bgmndy

mdyn + e2C |dz|2 (3.1)

where A,B,C are the warp factors that could be in general functions of time as well as

the internal coordinates (ym, z) and (µ, ν) = (0, 1, 2). The fourfold is a T 2 fibration over

a base. We denote the complex coordinate of the T 2 by z and the base has a metric gmn.

The corresponding type IIB metric is expected to be of the form (see also [41]):

ds2 = e2A+C (−dx2
0 + dx2

1 + dx2
2) +

e−3C

|τ |2 dx2
3 + e2B+C gmndy

mdyn (3.2)

which tells us that in principle the 3 + 1 dimensional Lorentz could be broken by choosing

a generic warp factor of the fibre torus in M-theory. The fibre torus, in M-theory, is

parametrised by a complex structure τ which is proportional to the axio-dilaton in type IIB:

dz = dx11 + τdx3, τ = C0 +
i

gs
(3.3)

Clearly if the torus was non-trivially fibred over the threefold base (with metric gmn) we

would expect non-zero cross terms in the type IIB metric. For our case we simply choose a

trivial T 2 fibration of the fourfold, so the cross-terms are absent. For a compact manifold

we would require the axion charge to vanish. This would mean that the contribution to

C0 from a single D7 brane is very small. This would change our metric to

ds2 = e2A+C(−dx2
0 + dx2

1 + dx2
2) +

e−3C

(Im τ)2
dx2

3 + e2B+C gmndy
mdyn (3.4)

Furthermore, restoring full 3 + 1 dimensional Lorentz invariance will tell us that the type

IIB metric has the following form:

ds2 =
e3A/2√
Im τ

ηµνdx
µdxµ +

e2B−A/2

√
Im τ

gmndy
mdyn (3.5)

Comparing the above form of the metric with the metric that we have (2.1), it is easy to

work out the corresponding M-theory warp factors in terms of h and the axio-dilaton τ as:

eA =

[
Im τ

h

] 1

3

, eB =
[
h(Im τ)2

] 1

6

, eC =

[ √
h

(Im τ)2

] 1

3

(3.6)
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Now combining (3.6) with (3.1) we can easily see that the fourfold is a given by the following

metric:

ds24−fold =
h1/3

(Im τ)4/3

∣∣dx11 + τ dx3
∣∣2 + h1/3(Im τ)2/3

[
dρ2

κ
+
ρ2

6

(
dθ2

1 + sin2 θ1 dφ
2
1

)
+

+
κ

9
ρ2
(
dψ + cos θ1 dφ1 + cos θ2 dφ2

)2
+
ρ2 + 6a2

6

(
dθ2

2 + sin2 θ2 dφ
2
2

) ]
, (3.7)

where the other variables have already been defined above. The type IIB NS and RR three-

form fluxes would converge to give us G-fluxes Gmnpq on the fourfold. The equations of

motion of G-fluxes are determined from the gravitational quantum corrections in M-theory

as well as M2 brane sources. To analyse this on the fourfold background (3.7) becomes

too cumbersome, so let us simply illustrate the case of a metric (3.1) with a warp factor of

the fibre torus e2B i.e C = B. In this case the G-fluxes satisfy the following two equations:

(1) Dq

[
e3A
(
Gmnpq − (∗G)mnpq

)]
=

2k2T2

8!
ǫmnpa1....a8(X8)a1....a8

(2) � e6B = − 1

2 · 4!Gmnpq(∗G)mnpq − 2k2T2

8!
· X8√−g + . . . (3.8)

where k2T2 are constants appearing in the M-theory Lagrangian, and we have made all

fields and the Hodge star operations w.r.t. the unwarped metric, except for the X8 term.

The X8 term in the above two equations is the eight form expressed entirely in terms of

the curvature tensor of the warped metric. This is the quantum correction that we can

put to zero when the background is non-compact. A simple observation of (3.8) will tell

us that for a compact manifold, a vanishing X8 term will lead to contradiction.

We have also left some dotted terms in the second equation of (3.8). These unwritten

terms account for sources, like M2 branes, in the theory. These M2 branes are precisely

the D3 branes that we will need to eventually put in to study inflation in our model.

Observe now that when we make X8 negligibly small (or in other words, when we

ignore quantum corrections), the equations of motion of the G-fluxes (3.8), tell us that the

covariant derivatives of G-fluxes have to vanish. This condition can be satisfied by two

different varieties of G-flux:

Gmnpq = (∗G)mnpq , or Gmnpq − (∗G)mnpq = e−3Aγmnpq (3.9)

where γmnpq is a covariantly constant tensor. The first condition means that the G-fluxes

have to be self-dual. If it is also primitive then this is the condition to preserve susy [28].7

The second condition concerns us here. Generically, this implies that the G-fluxes are not

primitive and therefore susy is spontaneously broken in our model. However, if we can

rewrite γmnpq as

γmnpq ≡ e3aγ(1)
mnpq − e3a

[
∗γ(1)

]
mnpq

(3.10)

7Recall that primitivity implies self-duality but not vice-versa on a 4-fold, in contrast to primitivity and

imaginary self-duality on a 3-fold.
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with e3a being a function that we will specify below, then self-duality is restored in the

presence of a new G-flux that is of the form

Gmnpq ≡ Gmnpq − e−3(A−a)γ(1)
mnpq (3.11)

although this may not be primitive. Indeed, if we demand γ(1) to be of the form

γ(1) ≡ J ∧ J (3.12)

with J being the fundamental 2-form in M/F-theory and e−3(A−a) is a closed zero form

then susy can be broken with a non-primitive self-dual (2, 2) form [42].8 A similar condition

can be derived on the fourfold with three warp factors, as in (3.1) and (3.7). With three

warp factors the analysis remains the same. One can easily verify this from the G-fluxes

constructed out of type IIB three-forms. In the following we will try to justify the existence

of this (2, 2) non-primitive form.

3.2 Normalisable harmonic forms and seven branes

So far, our study in M-theory has followed in parallel to that in type IIB. To see some

novelty from the M-theory picture, let us look for the remnants of the seven branes in

M-theory. Since M-theory does not support any branes other than two and five-branes,

the information of type IIB seven branes can only come from the gravity solution. In type

IIB theory, recall that the seven branes were embedded via the Ouyang embedding [22].

This means the embedding equation is:

(ρ6 + 9a2ρ4)1/4 exp

[
i(ψ − φ1 − φ2)

2

]
sin

θ1
2

sin
θ2
2

= µ2 (3.13)

In the limit µ→ 0 the seven branes should be embedded via the two branches:

Branch 1 : θ1 = 0, φ1 = 0

Branch 2 : θ2 = 0, φ2 = 0 (3.14)

and both run along the radial direction.9 The full geometrical analysis of the embedding is

difficult, but we can see that for branch 1 the seven branes wrap a four-cycle along direc-

tions (θ2, φ2) and (ψ, ρ) inside the resolved conifold background and are stretched along the

spacetime directions x0,1,2,3. One can easily see that the axionic charges of the seven branes

could all globally cancel by allowing a trivial F-theory monodromy so that there is no con-

tradiction with Gauss’ law. Subtleties come when we want to study compact manifolds

in the presence of seven-branes and non-primitive fluxes. In the absence of non-primitive

fluxes one can compactify the manifold with a sufficient number of seven branes and orien-

tifold planes. The more subtle situation with non-primitive fluxes will be discussed later.

8A non-self-dual flux of the form Gmnpq = e−3A

2
(γ − ∗γ)

mnpq
can also break susy and satisfy the second

condition in (3.9). However, such a choice of flux does not satisfy the equation of motion.
9It is easy to see why. A generic configuration of seven branes would be able to lower their actions by

going to smaller ρ. Therefore, they cannot be fixed at a specific ρ ≡ ρ0.

– 22 –



J
H
E
P
0
4
(
2
0
0
9
)
0
2
7

For the present case let us look at the metric along directions orthogonal to the type

IIB seven branes. The M-theory metric given above (3.7) will immediately tell us the

orthogonal space to be:

ds2 =
h1/3

(Im τ)4/3

∣∣dx11 + τdx3
∣∣2 + h1/3(Im τ)2/3

[
ρ2

6
dθ2

1 +
ρ2

6
sin2θ1 dφ

2
1

]

=
h1/3

(Im τ)4/3
(dx11 + Re τ dx3)2 + h1/3(Im τ)2/3

[
ρ2

6
dθ2

1 +
ρ2

6
sin2θ1 dφ

2
1

]

+
h1/3

(Im τ)4/3
(Im τ)2(dx3)2 (3.15)

where Re τ and Im τ are related to the axion and dilaton respectively in the following way:

Re τ ≡ C0 =
N

2π
(ψ − φ1 − φ2)

Im τ ≡ e−Φ =
1

gs
− N

2π
log

[
(ρ6 + 9a2ρ4)

1

4 sin
θ1
2

sin
θ2
2

]
(3.16)

and N is the number of the seven branes, as discussed in [22]. The above choice of axion-

dilaton is not the full story, as we will discuss in details in the sequel. For the time being,

however, we will continue using this result because the corrections to axion-dilaton are

subleading. Some aspects of these corrections have been discussed in [4] using results of [17].

To study the geometry further, let us analyse the background close to the point (φ1 = 0,

θ1 = 0). The resulting metric in the local neighbourhood of the point (φ1, θ1) has the

following form:

ds2 = h1/3(Imτ)2/3

[
ρ2

6
dθ2

1+
ρ2

6
sin2θ1dφ

2
1+(dx3)2

]
+

h1/3

(Imτ)4/3

(
dx11+

N

2π
(ψ−φ1−φ2)dx

3

)2

which can be compared to a Taub-NUT metric:

ds2Taub−NUT = V (r̃)
(
dx11 +A3dx

3
)2

+ V (r̃)−1
[
dr̃2 + r̃2dθ2 + r̃2 sin2 θ(dx3)2

]
(3.17)

with V (r̃) being the typical harmonic function. We see that (3.17) does have a strong

resemblance to (3.17), with the A3 charge of the Taub-NUT being given by the axionic

charge of N type IIB seven-branes, as expected. However, the local metric is more compli-

cated than the standard TN space because of the non-trivial back-reaction of the G-flux.

In particular, the warp factors and some of the coordinates appearing in (3.17) are not

quite of the form in (3.17). Nevertheless, (3.17) does capture some of the key features of a

Taub-NUT space, namely, the U(1) fibration structure and the gauge charge. In (3.17) the

gauge charge has a proportionality A3 ∝ cos θ. Such a choice of Taub-NUT charge helps

us to determine an anti-self-dual harmonic form in this space [40, 43, 44]. Comparing this

to (3.17), we see that the charge is given by C0 ≡ N
2π (ψ − φ1 − φ2). A small change in this

charge can be related to a small change in φ1, keeping other variables constant (recall that

we are measuring the charge away from the D7 brane).
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We now define the vielbeins in the following way:

ey ≡ h1/6

(Im τ)2/3

(
dx11 +

N

2π
(ψ − φ1 − φ2)dx

3

)
, e3 ≡h1/6(Im τ)1/3 dx3

eθ1 ≡h
1/6(Im τ)1/3ρ√

6
dθ1, eφ1 ≡h

1/6(Im τ)1/3ρ sin θ1√
6

dφ1 . (3.18)

Using these vielbeins we are now ready to construct our harmonic forms. These harmonic

forms have to be self-dual (or anti self-dual) as well as normalisable. Let us make the

following ansätze for the one-form:

ω = l(θ1)

(
dx11 +

N

2π
(ψ − φ1 − φ2)dx

3

)
. (3.19)

The harmonic two-form will then be given by dω and is therefore exact as well as harmonic.

To require this to be anti self-dual, we want ∗dω = −dω in this space with the Hodge star

being given by the warped metric (3.17). This gives us:

l(θ1) = exp

[
∓ N

2π

∫ θ1 dθ1
sin θ1 Im τ

]
. (3.20)

This implies that the one-form is:

ω = exp

[
∓
∫ θ1 dθ1

sin θ1

(
log sin θ1

2 + . . .
)
](

dx11 +
N

2π
(ψ − φ1 − φ2)dx

3

)
, (3.21)

which clearly means that an anti self-dual two-form is normalisable, whereas a self-dual

two-form in not. Existence of such normalisable forms guarantees many things: firstly it

confirms the existence of seven branes in this background. Once the harmonic forms are

defined over a compact two-sphere then the resulting background can be compactified so

that an effective four-dimensional theory could be defined. In the presence of a non-compact

background, the harmonic forms are very useful to determine the world volume theory on

the seven branes [40, 45, 46]. Secondly, existence of harmonic forms guarantees the non-

commutative deformations on the seven-branes [40]. Recall that the world-volume theory

on the type IIB seven-branes is non-commutative because of the presence of non-primitive

fluxes. This is perfectly consistent with the original D3/D7 inflationary model [47] that

was also non-commutative due to the presence of a non-primitive background. The key

difference between our present background and the original D3/D7 system is that (apart

from being the fact that the original D3/D7 system was defined on K3 × T 2/Z2) in the

original D3/D7 system the non-primitivity was treated as a tunable parameter (although it

might violate the equations of motion) and could be switched off to regain supersymmetry.

In our present scenario we see no way to switch off the non-primitivity. In other words,

our present background is inherently non-supersymmetric.

At this point we wish to make several comments: Firstly, the above analysis is only

for one of the embedding branches. It is not difficult to see that a similar analysis could
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be performed for the other branch. The total normalisable anti-selfdual harmonic form is

presumably a linear combination of these two forms. Secondly, − and this is important

− the above analysis relies heavily on the particular embedding that we took, namely the

embedding (3.13). This embedding is the trivial embedding that should be modified when

µ 6= 0 in (3.13). An immediate modification of the embedding equation (3.14), which was

for µ = 0, will be the following set of equations:

(ρ6 + 9a2ρ4)1/4 sin
θ1
2

sin
θ2
2

= |µ|2, ψ − φ1 − φ2 = θ̃ (3.22)

where θ̃ ≡ −i log µ
|µ| − 2nπ is a phase factor fixed by the orientation of the seven branes

in the angular directions. As soon as µ 6= 0, the embedding equations are no longer the

simplified equation (3.14), but rather the surface (3.22). Thus we see in a resolved conifold

that the seven branes wrap along a nontrivial curved four-cycle in the internal space.10

For this case one can also work out the normalisable harmonic form. The analysis is

more complicated but can be worked out as before. We will not attempt this here, but

end this part of the discussion by noting that these normalisable harmonic forms would

give rise to second cohomologies (i.e the second Betti numbers) once we compactify the

non-compact resolved conifold background.

3.3 One forms and M-theory uplift of fluxes

At this point we should come back to the issue that we briefly alluded to earlier: com-

pactifying our manifold in type IIB theory. From the F/M-theory point of view, this is

equivalent to finding a consistent compact base. This problem has already been solved

earlier in [48, 49] and [50–52]. The compact base − which we call B henceforth − should

have at least one smooth curve P1 with normal bundle O(−1) ⊕O(−1). The Weierstrass

model for the fourfold can be obtained as a Calabi-Yau hypersurface with the equation:

y2 = 4x3 − g2x− g3 (3.23)

where y is the coordinate on the bundle OB(3KB), x is the coordinate on the bundle

OB(2KB) and gk is a section of OB(−2kKB) for k = 2, 3.

The elliptic fibre is generically smooth, but is a cuspidal cubic over points where

y2 = 4x3 and nodal cubic over points where g3
2 = 27g2

3 with gk not zero. These latter are,

of course, the points where the discriminant of the Weierstrass equation vanishes. The zero

locus of the discriminant is a complex surface S containing the curve D defined by y2 = 4x3.

Once we know S and D, the Euler characteristics of the fourfold can be completely written

in terms of the Euler characteristics of these submanifolds, i.e

χ = χ(S) + χ(D) = 19728 = 24 × 822 (3.24)

which would tell us that the total number of branes and fluxes should add up to 822 for

this manifold.11

10This is clearly a four-cycle because there are six unknowns and two equations in (3.22).
11Incidentally, if we make a conifold transition to the base to go to a fourfold that is a T 2 fibration over

a deformed conifold base, the Euler number remains unchanged. See [49, 52] for more details.
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Observe, however, that the fourfold that we choose with a Kähler base is not the most

generic answer. In general, the base could be a non-Kähler manifold. What we need from

our present analysis is the existence of one-forms in our manifold which could be used to

express the (1,2) fluxes in the type IIB set-up. Presently, in the type IIB set-up, we can

think of the following three choices of one-forms in our manifold:

The first of the three one forms can be written in terms of the holomorphic coordinates

(z, y, u, v) given in (A.8), in the following way [53]:

ω1 ≡ r−2
(
N1/3 + 4a4N−1/3 − 2a2

)
Im (z̄dz + ȳdy + ūdu+ v̄dv) (3.25)

where N = N(r) = 1
2

(
r4 − 16a6 +

√
r8 − 32a6r4

)
. See (A.12) for the relation between r

and our radial coordinate ρ. The above one form contributes an exact part to the Kähler

form on the resolved conifold. This one form is invariant under the underlying SO(4,R).

Another one form can be constructed using the homogeneous coordinates ζ+ = ξ2
ξ1

and

ζ− = ξ1
ξ2

that respectively define the two patches H+ where ξ1 6= 0 and H− where ξ2 6= 0

on the S2 of the resolved conifold. (See appendix A for more details on the geometry.)

We construct one forms on the two patches H± in the following way:

ω± =
1

2
Im

ζ±dζ̄±
1 + |ζ±|2

(3.26)

One can also show that these forms are also invariant under SO(4) just like ω1 above.

Finally, the third category of one forms in our background are of the form:

ωi3 = gi(ρ)Ei, ω̄j3 = hj(ρ)Ēj (3.27)

with no sum over i, j (although one can combine these one forms to write another one

form). The Ei are the complex vielbeins described in appendix A. These one forms can

only exist on the compactified base if they have a compact support. In the following we

will discuss the asymptotic behaviours of ω3 and ω̄3.

To study the asymptotic behaviour it is important to divide our type IIB fluxes into

(2, 1) and (1, 2) parts. Let us also scale the radial coordinate ρ as ρ → λρ so that large λ

means that we are exploring UV geometries. In this limit clearly

Ei → λEi, ηi → λ3ηi (3.28)

where the ISD forms ηi were defined in (2.31). The (2, 1) part of Ĝ3 is then:12

Ĝ
(2,1)
3 =

[
α1(ρ) − 9P (ρ2 + 3a2)

ρ3
√
ρ2 + 6a2

√
ρ2 + 9a2

]
η1 + e−iψ/2α3(ρ, θ1) η3 + e−iψ/2α4(ρ, θ2) η4

(3.29)

with the functional forms of α1, α3 and α4 derived in appendix B, see (2.33). For large ρ

or large λ, the behaviour of Ĝ
(2,1)
3 is of the form:

Ĝ
(2,1)
3 → constant + log λ (3.30)

12Recall that we are using hatted quantities to indicate the background flux with backreaction from the

embedded seven branes.

– 26 –



J
H
E
P
0
4
(
2
0
0
9
)
0
2
7

and therefore Ĝ
(2,1)
3 diverges logarithmically. This divergence is not problematic because

eventually we are compactifying our manifold to a non-CY threefold. One should also

observe that the (2, 1) part of the fluxes in the original PT solution [16] asymptotically

goes to a constant.

On the other hand, the asymptotic behaviour of the (1, 2) part of the fluxes is more

interesting. The explicit form of the (1, 2) part is given by:

Ĝ
(1,2)
3 =

[
α8 −

27Pa2

ρ3
√
ρ2 + 6a2

√
ρ2 + 9a2

]
η8 , (3.31)

with α8 given in (2.33). Asymptotically Ĝ
(1,2)
3 now behaves in the following way:

Ĝ
(1,2)
3 → 1

λ2
(3.32)

and therefore goes to zero very fast. In fact the (1, 2) part of the fluxes in [16] also has the

same behaviour asymptotically.

Such an asymptotic behaviour of Ĝ
(1,2)
3 is good for us. This means that, since the

fluxes vanish at the boundary, they should naturally exist once we compactify the resolved

conifold to a compact threefold. Furthermore we see that the (1, 2) part of the three form

flux can be expressed alternatively as:

Ĝ
(1,2)
3 = J ∧ m̄ (3.33)

with m̄ being a (0, 1) form as one would have indeed expected. From our above consider-

ation the (0, 1) form and J are given in terms of the three one-forms in the following way:

m̄ ≡ h1(ρ)Ē1 =

[
α8 −

27Pa2

ρ3
√
ρ2 + 6a2

√
ρ2 + 9a2

]
Ē1, J = dω1 + 4a2dω± (3.34)

on the two patches H±. The latter definition of J is identical to the definition of J in terms

of the complex vielbeins Ei given in (A.17).13 It is also clear that the (2, 1) form cannot

be expressed as (3.33) using a one form because the (2, 1) form is primitive. Observe, how-

ever, that the existence of a normalisable (0, 1) form doesn’t always imply the existence of

a non-trivial one-cycle in the manifold.14

Once we have the explicit (1, 2) forms, we still must see how this is uplifted in the

M-theory picture. This is where things become somewhat subtle. The generic uplift of

type IIB three-forms was given in [24, 39] in the following form:

G4 = −Ĝ3 ∧ dz̄
τ − τ̄

+
¯̂
G3 ∧ dz
τ − τ̄

= F̂3 ∧ dx3 + Ĥ3 ∧ dx11 (3.35)

where we have used the usual definitions of G3 and dz, namely: Ĝ3 = F̂3 − τĤ3 and

dz = dx11 + τdx3 (although dτ 6= 0). Thus F̃3 = F̂3 −C0Ĥ3 and F̂3 = dĈ2 to comply with

13Note that the volume form is unique despite the existence of multiple one-forms. The volume form is

given by: V = du ∧ dy ∧ dζ+ = dv ∧ dz ∧ dζ−.
14Although, in the language of the fourfold the threefold base does have a non-vanishing first Chern class.
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the notation used in section 2. With these definitions, the T-duality from IIB to M-theory

works in an expected way.

However, because of the presence of dz̄ and dz in (3.35), the uplift of a (2, 1) form is

indeed a (2, 2) form, but the naive uplift of a (1, 2) form becomes a (1, 3) or a (3, 1) form,

none of which are suitable for our case because these forms are ASD in M-theory. In the

literature such subtlety was never observed because the ISD fluxes were never taken to

have (1, 2) components. For our case, as we saw above, such forms are allowed because of

their localised and normalisable nature.

Indeed, such localisation of fluxes will eventually help us to show that the (1, 2) forms

would also lift to F-theory as (2, 2) forms. To see this, observe that F-theory allows the

following two important topological couplings:

L1 ≡
∫

M12

C4 ∧G4 ∧G4, L2 ≡
∫

M12

G4 ∧G4 ∧G4 , (3.36)

where C4 is the self-dual four-form in type IIB theory and M12 is the twelve dimensional

space (see [54] and references therein for more details on these couplings).

The coupling L1 is well known. This leads to the standard Chern-Simmons term on

D7 branes when we decompose the four-form as G4 = F ∧dω, where dω is the normalisable

two-form derived earlier and F is the gauge flux on a D7 brane. The second coupling, L2,

concerns us here. In type IIB there are no fundamental massless four-forms other than C4

discussed above. How do we interpret G4? The coupling that we are concerned with here is
∫

M8

G4 ∧ F ∧ F , (3.37)

where M8 is an eight dimensional surface. The only eight dimensional surface that we have

in type IIB is the surface of the D7 brane. Therefore, we should expect the coupling (3.37)

to show up on the surface of the D7 brane as some kind of compact four-form coupling to it.

Existence of such compact four-forms can arise from the Chern-Simons terms on the

D7 branes. One can easily see that there is a coupling of the form:
∫

M8

F̃3 ∧ A ∧ F ∧ F ≡
∫

M8

(
F̂3 −C0 Ĥ3

)
∧A ∧ F ∧ F (3.38)

when we choose the orientation of the D7 branes such that the arbitrary phase factor θ̃

in (3.22) is a constant and our gauge invariant field on any D7 brane is F = B̌ − F where

B̌ is the pullback of the NS 2-form.15

The above form of the coupling (3.38) is of the type (3.37) provided the one-form

A also becomes localised. Observe that both the three-forms appearing in (3.38) are the

localised (1,2) forms. Let us then assume that the one-form is A = l1(θ1)dx
3, where l1(θ1)

is some localised function that we will specify soon. We have also made a gauge choice to

orient A along x3 direction. With this we see that one choice of localised four-form flux is:

G
(1)
4 ≡ l1(θ1)F̃3 ∧ dx3 = l1(θ1)

(
F̂3 ∧ dx3 − C0 Ĥ3 ∧ dx3

)
. (3.39)

15We take 2πα′ = 1 henceforth.
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There is another choice of localised four-form flux that we can have in addition to (3.39).

This choice can be motivated from the Born-Infeld terms of the D7 branes, and is given by:

G
(2)
4 = Ĥ3 ∧ ω , (3.40)

where ω is the one-form derived in (3.21). Once we compactify the internal space, the total

axionic charge has to vanish. In that case both G
(1)
4 and G

(2)
4 simplify. In the presence of

axion field, the total localised four-form flux is given by:

G4 ≡ G
(1)
4 +G

(2)
4 = Ĥ3 ∧ ω + l1(θ1)

(
−F̂3 ∧ dx3 +C0 Ĥ3 ∧ dx3

)
, (3.41)

which can be put in a very suggestive form if we define l1(θ1) = l(θ1) with l(θ1) being the

function of θ1 given in (3.20) and (3.21):

G4 = l(θ1)
(
Ĥ3 ∧ dx11 − F̂3 ∧ dx3 + 2C0 Ĥ3 ∧ dx3

)
= −l(θ1)

Ĝ
(1,2)
3 ∧ dz
τ − τ̄

+ c.c (3.42)

with dz = dx11 + τdx3 and Ĝ
(1,2)
3 being the (1, 2) form. The above four-form is clearly

a (2, 2) form as one would have expected from the earlier discussions [32, 42, 55]. Notice

however that the four-form flux is not closed.

It is also interesting to note that since Ĝ
(1,2)
3 is of the form J ∧ m̄ (see (3.33)), the

localised (2, 2) form in M-theory becomes:

G4 ≡ 1

2
Re
(
ieφ l(θ1) J ∧ m̄ ∧ dz

)
(3.43)

At this point we may want to connect the four-form with the results given in [32, 42]. The

four-form should be related to J ∧J in M-theory where J is the fundamental (1, 1) form

for the fourfold. Defining J = J + dz ∧ dz̄, we have

J ∧ J = J ∧ J + 2J ∧ dz ∧ dz̄ . (3.44)

It is easy to follow these fluxes to see how they appear in type IIB side. The second compo-

nent in (3.44) i.e J ∧dz∧dz̄ becomes a three-form field strength in T-dual type IIA theory:

(τ − τ̄) J ∧ dx3 (3.45)

whose origin will be discussed in the next section. Similarly, the first component in (3.44)

(J ∧ J) becomes a five-form in type IIB side which has one component along x3 direction

and other components inside the threefold. This takes the form:

G5 =
ρ3

9
sin θ1 dρ ∧ eψ ∧ dφ1 ∧ dθ1 ∧ dx3 +

ρ(ρ2 + 6a2)

9
sin θ2 dρ ∧ eψ ∧ dφ2 ∧ dθ2 ∧ dx3

+
ρ2(ρ2 + 6a2)

18
sin θ1 sin θ2 dφ1 ∧ dθ1 ∧ dφ2 ∧ dθ2 ∧ dx3 . (3.46)

This five-form (or the equivalent four-form) is strongly reminiscent of the four-form that

we called G
(1)
4 in (3.39), which does have one component along x3 direction. Indeed, the

five-form:16
dl

dθ1
dθ1 ∧ F̂3 ∧ dx3 +

l

2

(
dĜ3 + d

¯̂
G3

)
∧ dx3 (3.47)

16This is clearly non-vanishing because the underlying four-form is not closed as we saw above.
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that we get from our background flux does match with (3.46), but (3.47) has more terms

than (3.46). This difference appears because, once we compactify our manifold, the fun-

damental form J would change which, would change the five-form (3.46).

The connection we have established here gives a stronger justification for why the cos-

mological constant should vanish in the bulk. It may be interesting to see if the arguments

of [55] could be applied to our scenario also. This will be discussed elsewhere.

4 Applications to cosmology

4.1 Compactification and non-Kählerity

There remain issues that were given only partial attention in our earlier sections. The

first such issue is the nature of a possible compactification of our background, which will

certainly not be a Calabi-Yau, nor even Kähler. In the F-theory section we discussed that

the six-dimensional base cannot be a Calabi-Yau manifold as it has a non-vanishing first

Chern class. By reducing to IIA we can argue that the T-dual IIB background will indeed

be non-Kähler. This construction follows the ones laid out in [48, 56].

The three form flux (3.45) that we get in type IIA will dissolve in the metric once we

T-dualise to type IIB theory, making the background non-Kähler.17 Once the background

is non-Kähler there would be extra sources of fluxes in addition to the fluxes that we

mentioned in (3.41), namely “geometric flux”. One can replace the type IIB three form

NS flux by

H̃3 ≡ Ĥ3 + id(e−φJ) . (4.1)

This complexification of the three form flux is not new and has been observed earlier in

heterotic compactifications [57–60], which in turn gave rise to a new superpotential in the

heterotic theory [61, 62]. An interesting observation here is that the type IIB background

itself becomes non-Kähler now as compared to the heterotic background where the type

IIB background was conformally Kähler.

We also remarked on possible generalisations of the IIB superpotential in section 2.2. It

seems clear that the GVW superpotential will get corrected if the moduli space is enlarged

by non-trivial one-forms. For the case of a background that is mirror to a Calabi-Yau with

NS flux (so it acquires a non-trivial T 3 fibration when the mirror symmetry is interpreted as

three T-dualities — the NS B-field becomes part of the metric in the mirror manifold [56]),

a superpotential has been proposed [13]. Whether or not this is suggestive for our case

requires further study. Thus far, we have no reason to believe that our IIB manifold

(globally) admits an SU(3) structure. The space of generalised Calabi-Yau manifolds is

much larger, though some work on superpotentials in this case appeared in [63–66]. If we

could infer that our IIB background admits an SU(3) structure, then it would be guaranteed

to be complex [67–69] if it preserved supersymmetry. However, in the presence of susy-

breaking flux we cannot infer the structure of the manifold. A complex manifold would

have the advantage to give us control over the complex structure deformations.

17In M-theory once dJ 6= 0 the four-form flux J ∧ J is not closed. This is of course consistent with our

choice of four-form flux (3.41).
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4.2 Inflationary dynamics

The major motivation for constructing the background in this paper was to study a model

of inflation that may give slow roll dynamics with less fine tunings than the usual D3−D3

scenarios [1, 2]. Let us therefore sketch a possible model of inflation using the resolved

conifold background with D7 branes and additional D3 branes.

Recall that D3/D7 inflation has primarily been studied in toroidal manifolds (see [47]

and citations therein) of the form T n/Γ of which K3×T 2/Z2 is a special case. The F-term

and D-term potentials appearing from the gaugino condensate and susy breaking fluxes,

respectively, conspired to give a consistent resolution of the anomalies associated with the

FI terms.

We outline a possible scenario to achieve slow roll inflation when we combine the ideas

of D3−D3 in the “warped throat” (KKLMMT [1]) with D3/D7 models [47]).18 We want

to balance a D3 that is attracted towards the D7 (because of the non-primitive flux on

the D7 worldvolume) with another force that drives the D3 toward the tip. This can be

achieved by placing an anti-D3 there or by using a background in which the addition of a

D3 explicitly breaks supersymmetry, such as the resolved warped deformed conifold [17].

The motion of D3-branes towards the tip in the latter background is a consequence of the

running dilaton. However, this potential alone is still too steep for slow-roll inflation.

Combining both forces, however, we might hope to slow down the motion of the D3

in either the one or the other direction. There are two possible scenarios, depending on

which force dominates:

• The D-term potential created by the non-primitive flux dominates and attracts the

D3-brane towards the wrapped D7 brane. Inflation ends when the D3 dissolves into

the D7 as non-commutative instantons and supersymmetry is restored.

• The attraction towards the anti-D3 brane at the bottom of the throat (or possibly

a running dilaton in a more general background) dominates. Inflation ends as all or

some D3 branes getting annihilated by the anti-D3 brane(s) at the tip of the throat.

Naively one might hope that the motion would be slow because the D3 branes are pulled

in both directions. However, it may also turn out that the initial position of the D3 has to

be heavily fine-tuned in this setup.

The F-term potential associated with the motion of the D3-branes towards the tip of

the throat has recently been computed with the inclusion of holomorphically embedded

D7-branes [2–4] using the analysis of [70]. If we want to combine the D-term and F-term

potentials we are faced with an issue pointed out by [8]: for a supersymmetric background

it is impossible to have a D-term potential that could be used to pull the D3 brane to-

wards the D7 branes. Thus if we want to switch on non-primitive fluxes on the wrapped

D7 branes we have to embed the D7 branes in a non-supersymmetric background. Our

problem becomes threefold:

• Construct a supergravity background with embedded D7 branes that breaks super-

symmetry spontaneously.

18Similar idea has been proposed independently by Cliff Burgess.
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• Allow for a possible D-term uplifting by avoiding the no-go theorem of [8], as pointed

out by [7]. Note that the D7 worldvolume theory will not only contribute the D but

also possible F-terms, such that the issue of [8] might be resolved.

• Balance the D3 brane using the two forces: one from the D-term potential and

the other from the attractive force at the tip of the deformed conifold in the

KKLMMT setup.

In this paper we have addressed the first two problems by constructing a non-

supersymmetric background with D-terms on the D7 branes given by the pullback of a

non-primitive flux. To analyse the last problem, we might have to go to a more generic

background of the form given earlier as (1.1) which is a resolved warped deformed conifold

with F1 6= F2 and b 6= 0, i.e. both the two and the three cycles are non vanishing. Most of

the literature deals with the limit where the manifold looks like a singular conifold. This

isn’t the most generic situation so we have to go away from the usual conifold background.

However, taking a resolved warped deformed conifold creates non-trivial dilaton profile

from two sources now:

• From the D7 branes, and

• From the unequal sizes of the two-cycles.

The running of dilaton from the first case can already be seen at a supersymmetric level

in the Ouyang background [22], which was originally analysed for a non-compact singular

conifold background. Once we blow up resolution cycles of the conifold and switch on

fluxes, the second case mentioned above kicks in, and we must discuss the combined effects

to get the full background geometry. This makes the problem much harder to solve and

will be tackled in the sequel to this paper.

The warped resolved conifold however may still be a good model of inflation with D-

term uplifting. We would have to extend our analysis beyond the case µ = 0 (in this case

the D7 extend all the way down the throat, which would not allow us to place a D3 between

the D7 and the tip) and to other embeddings, such as the Kuperstein embedding [71]. Our

preliminary analysis indicates that the value of the D-terms should depend on the choice

of embedding.

4.3 Supersymmetry restoration

When the D3-brane falls into the D7-branes at the end of inflation we expect supersym-

metry to be restored. Such a susy restoration was first described in [47]. For our case, the

situation is more involved. From the F-theory point of view, the total G-flux at the end of

the inflation can be succinctly presented as:

Gtotal ≡ G
(2,2)
P + c1 J ∧ J + c2 F ∧ dω + c3 Ĥ3 ∧ ω , (4.2)

where ci are some defined functions of the coordinates (θ1, φ1) or (θ2, φ2) depending on

which branch (3.14) we are on, G
(2,2)
P is the primitive part of the G-flux that come from
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the uplift of the type IIB (2, 1) forms, and F is the gauge flux induced by dissolving the D3

brane inside the D7 branes. The 1-form ω was defined in (3.21). The last term coming from

the Ĥ3 coupling is non-primitive, and because of that in the absence of F flux, the G flux

was (2, 2) but non-primitive. Observe that in the presence of F flux we can in fact demand:

J ∧Gtotal = 0 (4.3)

and therefore restore supersymmetry with (2,2) fluxes.

The F flux used to restore supersymmetry in the above paragraph could be interpreted

in two ways: switching on second Chern class or switching on first Chern class. The former,

which leads to instantons, is the end point of the D3 brane dissolving on the D7 branes.

The latter, however, gives rise to a bound state of a D5 brane with the D7 branes. Such

a technique of restoring supersymmetry has already been discussed in [72, 73] and could

probably be used to restore supersymmetry in the limit where the resolution parameter a

goes to zero. This would then be one simple way of restoring supersymmetry in the original

Ouyang construction [22].

5 Conclusions and future directions

Related to our flux choice is another issue that deserves mentioning. The (1, 2) flux that we

choose is ISD and solves equations of motion. One may also choose AISD flux if one changes

the ansätze for the background geometry, i.e. if one ventures beyond conformal Calabi-

Yau compactifications. Typically one can show that a compact conformally Calabi-Yau

background only allows ISD fluxes that are also primitive. As we saw above, non-primitive

ISD fluxes are allowed on a compact non-Kähler background or on a non-compact Calabi-

Yau background. However AISD fluxes are generically part of the solution to the equations

of motion on non-Kähler backgrounds. Some recent papers dealing with this are [74–76].

One other question would be to reconcile the following puzzle:19 A non-compact

Calabi-Yau background could be dual to a gauge theory via gauge/gravity duality. In

the gravity side it is possible to have supersymmetry breaking without generating a cos-

mological constant. However on the gauge theory side it is in general not possible to break

supersymmetry keeping the cosmological constant zero. Maybe in our case there is some

obstruction to finding a gauge theory that is dual to our non-compact background. In

fact the non-compact resolved conifold background that we took is dual (in the sense of

a geometric transition) to a pure supergravity background20 if we consider wrapped D5

branes instead of the RR three form fluxes [48, 49, 77, 78]. The resolved conifold as a

supergravity background without branes is only known to be dual to a gauge theory in IIA

when there are one form gauge fluxes present. On the other hand, once susy is restored

via one of the possible mechanism discussed earlier, our background could in principle be

dual to some gauge theory. The other known duality is the one studied recently in [79]

that uses large number of D3 branes in the resolved conifold background. This model is

very different from the one studied by us here.

19We thank Shamit Kachru for discussions on this point.
20A warped deformed conifold with fluxes.
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In summary, we have applied the methods of [22] to the warped resolved conifold

background of Pando-Zayas and Tseytlin [16]. We found a supergravity background that

breaks supersymmetry spontaneously due to fluxes of type (1,2) without generating a bulk

cosmological constant. The pullback of the NS B-field onto the D7-worldvolume gives rise

to D-terms, which vanish in the limit of vanishing resolution parameter a→ 0, i.e. when we

approach the original singular background of [22]. We have also convinced ourselves that

the worldvolume flux in the original embedding is non-primitive and should therefore break

supersymmetry. A cancellation of this effect by adding gauge fluxes would be worth further

study. We should then also re-examine the D-terms we find on the resolved conifold. In the

case we studied, the D7 gauge fluxes were zero and the D-terms entirely due to the non-

primitive NS B-field. In general we would also expect F-terms from the D7 worldvolume

theory. As soon as we want to apply our model to inflationary model building, we would

want to add D3-branes into the picture. This gives rise to new degrees of freedom and

further influences the F-terms.

In parallel to the IIB discussion we have also studied the F-theory lift of our back-

ground. We showed how the non-primitive ISD G3-flux lifts to non-primitive selfdual G4

flux, which should be proportional to J∧J . We gave an explicit construction of the normal-

isable harmonic forms that correspond to the D7-branes. These harmonic forms would ap-

pear as second cohomologies of the compactified fourfold. We showed how a compact non-

Kähler threefold base could be constructed which would have the required local features of a

resolved conifold background that we studied for the type IIB scenario. A more detailed ac-

count of the fourfold, including its cohomological structure, will be discussed in the future.
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A The geometry of the resolved conifold

The resolved conifold is a manifold which looks asymptotically like the singular conifold,

but is non-singular at the tip. Its geometry can be derived by starting with the singular

version, a non-compact Calabi-Yau 3-fold, that can be embedded in C
4 as [20]

4∑

i=1

z2
i = 0 . (A.1)
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This describes a cone over S2 × S3, which becomes singular at the origin. By a change of

coordinates this can also be written as

yz − uv = 0 , (A.2)

which is equivalent to non-trivial solutions to the equation
(
z u

v y

)(
ξ1
ξ2

)
= 0 , (A.3)

in which ξ1, ξ2 are homogeneous coordinates on CP
1 ∼ S2. For (u, v, y, z) 6= 0 (away

from the tip), they describe again a conifold. But at (u, v,w, z) = 0 this is solved by any

pair (ξ1, ξ2). Due to the overall scaling freedom (ξ1, ξ2) ∼ (λξ1, λξ2) we can mod out by

this equivalence class and (ξ1, ξ2) actually describe a CP
1 ∼ S2 at the tip of the cone. The

resolved conifold can be covered by two complex coordinate patches (H+ and H−), given by

H+ = {ξ1 6= 0} = {(u, y;λ)|u, y, λ ∈ C} , λ =
ξ2
ξ1

(A.4)

H− = {ξ2 6= 0} = {(v, z;µ)|v, z, µ ∈ C} , µ =
ξ1
ξ2
. (A.5)

On H+ we have that

z = −uλ , v = −yλ , (A.6)

on H−

y = −vµ , u = −zµ , (A.7)

and on the intersection of these two patches, the coordinates are related by

(v, z;µ) = (−yλ,−uλ; 1/λ) .

The holomorphic coordinates are conveniently parameterised by

z =
(
9a2ρ4 + ρ6

)1/4
ei/2(ψ−φ1−φ2) sin(θ1/2) sin(θ2/2)

y =
(
9a2ρ4 + ρ6

)1/4
ei/2(ψ+φ1+φ2) cos(θ1/2) cos(θ2/2)

u =
(
9a2ρ4 + ρ6

)1/4
ei/2(ψ+φ1−φ2) cos(θ1/2) sin(θ2/2)

v =
(
9a2ρ4 + ρ6

)1/4
ei/2(ψ−φ1+φ2) sin(θ1/2) cos(θ2/2) . (A.8)

Here, θi = 0 . . . π, φi = 0 . . . 2π are the usual Euler angles on S2, ψ = 0 . . . 4π describes a

U(1) fibre over the two 2-spheres and ρ = 0 . . .∞ is the radial coordinate. Note that our

radial coordinate ρ is related to the commonly used r via ρ2 = 3/(2r2)F ′(r2), where F (r2)

appears in the Kähler potential K of the resolved conifold

K(r) = F (r2) + 4a2 log(1 + |λ|2) . (A.9)

Note that the Kähler potential is not a globally defined quantity, since λ is only defined

on the patch H+ that excludes ξ1 = 0. For completeness let us also quote [16, 20]

F ′(r2) =
∂F (r2)

∂r2
=

1

r2

(
−2a2 + 4a2N−1/3(r) +N1/3(r)

)
with (A.10)

N(r) =
1

2

(
r4 − 16a2 +

√
r8 − 32a6r4

)
. (A.11)
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The inverse relation between ρ and r is found to be

r =

(
2

3

)3/4

(9a2ρ4 + ρ6)1/4 . (A.12)

In terms of these real coordinates the Ricci-flat Kähler metric on the resolved conifold

reads

ds2res = κ(ρ)−1 dρ2 +
κ(ρ)

9
ρ2
(
dψ + cos θ1 dφ1 + cos θ2 dφ2

)2

+
ρ2

6

(
dθ2

1 + sin2 θ1 dφ
2
1

)
+
ρ2 + 6a2

6

(
dθ2

2 + sin2 θ2 dφ
2
2

)
, (A.13)

with κ(ρ) = (ρ2 + 9a2)/(ρ2 + 6a2). In the limit a → 0 one recovers the singular conifold

metric, therefore a is called “resolution” parameter and gives the radius of the blown-up

2-sphere at the tip.

It will be useful later on to have a set of vielbeins that describes this metric, i.e.

ds2 =
6∑

i=1

(ei)
2 . (A.14)

Following [21] we choose

e1 = κ−1/2 dρ

e2 =
ρ
√
κ

3
(dψ + cos θ1 dφ1 + cos θ2 dφ2) =

ρ
√
κ

3
eψ

e3 =
ρ√
6

(sinψ/2 sin θ1 dφ1 + cosψ/2 dθ1)

e4 =
ρ√
6

(− cosψ/2 sin θ1 dφ1 + sinψ/2 dθ1)

e5 =

√
ρ2 + 6a2

√
6

(sinψ/2 sin θ2 dφ2 + cosψ/2 dθ2)

e6 =

√
ρ2 + 6a2

√
6

(− cosψ/2 sin θ2 dφ2 + sinψ/2 dθ2) (A.15)

as they lead to a closed Kähler form J as well as a closed holomorphic 3-form Ω with a

simple complex structure induced by

J (1,1) = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 , Ω(3,0) = (e1 + ie2)∧ (e3 + ie4)∧ (e5 + ie6) , (A.16)

in other words we define our complex vielbeins to be

E1 = e1 + i e2 , E2 = e3 + i e4 , E3 = e5 + i e6 . (A.17)

This results in a coordinate expression for J as

J =
ρ

3
dρ∧(dψ+cos θ1dφ1+cos θ2dφ2)+

ρ2

6
sin θ1dφ1∧dθ1+

ρ2 + 6a2

6
sin θ2dφ2∧dθ2 . (A.18)
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B Ouyang embedding of D7-branes on the resolved conifold

In this appendix we describe how D7-branes can be embedded in the PT background. We

use the Ouyang [22] embedding

z = µ2 , (B.1)

where z is one of the holomorphic coordinates defined in (A.8). While this choice was

orginally made for the singular conifold, it continues to give a consistent holomorphic

embedding on both patches. From (A.8), it is clear that selecting z = µ2 on H− implies

that −uλ = µ2 on the intersection with H+, which consistently gives z = µ2 on all of H+.

While the case µ 6= 0, where the D7-brane does not extend to the tip of the throat, is

of primary interest for inflationary models, we set µ = 0 for simplicity of calculation. As

a consistency check we should always be able to recover a supersymmetric solution in the

limit a→ 0. The D7-brane induces a non-trivial axion-dilaton

τ =
i

gs
+

N

2πi
log z , (B.2)

where N is the number of embedded D7-branes. Our goal is to determine the change the

dilaton induces in the other fluxes and the warp factor. We will closely follow the method

laid out in [22] and solve the SuGra equation of motion only in linear order gsN . That

said, we neglect any backreaction onto the geometry beyond a change in the warp factor,

i.e. we will assume the manifold remains a conformal resolved conifold.

Consider first the Bianchi identity, which in leading order becomes (H3 indicates the

unmodified NS flux from (2.3), whereas the hat indicates the corrected flux at leading order)

dĜ3 = dF̂3 − dτ ∧ Ĥ3 − τ ∧ dĤ3 = −dτ ∧H3 + O((gsN)2) (B.3)

= −
(
N

2πi

dz

z

)
∧
(
df1(ρ) ∧ dθ1 ∧ sin θ1 dφ1 + df2(ρ) ∧ dθ2 ∧ sin θ2 dφ2

)
+ O((gsN)2) .

In order to find a 3-form flux that obeys this Bianchi identity, we make an ansatz

Ĝ3 =
∑

αi ηi (B.4)

where {ηi} is a basis of imaginary self-dual (ISD) 3-forms on the resolved conifold given

in (2.31). We find a particular solution in terms of only four of above eight 3-forms

P3 = α1(ρ) η1 + e−iψ/2α3(ρ, θ1) η3 + e−iψ/2α4(ρ, θ2) η4 + α8(ρ) η8 , (B.5)

with

α3 = −3
√

6gsNP
72a4 − 3ρ4 + a2ρ2(log(ρ2 + 9a2) − 56 log ρ)

8πρ3(ρ2 + 6a2)2
cot

θ1
2

α4 = −9
√

6gsNP
ρ2 − 9a2 log(ρ2 + 9a2)

8πρ4
√
ρ2 + 6a2

cot
θ2
2

(B.6)

α8 =
3a2

ρ2 + 3a2

[
3gsNP

−9(ρ2 + 4a2) + 28ρ2 log ρ+ (81a2 + 13ρ2) log(ρ2 + 9a2)

8πρ3
√
ρ2 + 6a2

√
ρ2 + 9a2

+ α1(ρ)

]
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Note that a8 is implicitly given by α1, which in turn is determined via the first order ODE

α′
1(ρ) =

−3

ρ(ρ2 + 3a2)(ρ2 + 9a2)
√
ρ2 + 6a2

[
(162a6 + 78a4ρ2 + 15a2ρ4 + ρ6)√

ρ2 + 6a2
α1(ρ)

+3gsNP
−162a6+99a4ρ2+63a2ρ4+6ρ6+14a2ρ2(ρ2+9a2) log ρ2

ρ2+9a2

4πρ3
√
ρ2 + 9a2


 . (B.7)

Letting a → 0 in above equations, we do indeed recover the singular conifold solution

of [22]. Keeping the resolution parameter a finite instead, we can solve for α1(ρ)

α1(ρ) =
3gsNP

8πρ3

[
18a2 − 36(ρ2 + 3a2) log

(ρ
a

)
+ (10ρ2 + 72a2) log

(
ρ2

ρ2+9a2

)]

√
ρ2 + 6a2

√
ρ2 + 9a2

(B.8)

Furthermore, we find a homogeneous solution

Ghom3 = β1(z, ρ)η1 + e−iψ/2β3(ρ, θ1)η3 + e−iψ/2β4(ρ, θ2)η4 + e−iψβ5(ρ, θ1, θ2)η5 +β8(z, ρ)η8 ,

(B.9)

with

β1 =
−3i

8ρ3
√
ρ2 + 6a2

√
ρ2 + 9a2

[
12(ρ2 + 3a2) log z + 18a2 + 10(ρ2 − 9a2) log ρ

+ (13ρ2 + 99a2) log(ρ2 + 9a2)
]

β3 = 3i
√

6

(
−36a4 + 3ρ4 + 2a2ρ2

(
20 log ρ− log(ρ2 + 9a2)

)

4ρ3(ρ2 + 6a2)2

)
cot

θ1
2

β4 = −9i
√

6

(
ρ2 − 6a2 log(ρ2 + 9a2)

4ρ4
√
ρ2 + 6a2

)
cot

θ2
2

β5 =
−9i (cot θ12 cos θ2 + cot θ1)

2ρ2
√
ρ2 + 9a2 sin θ2

β8 =
−27ia2

8ρ3
√
ρ2 + 6a2

√
ρ2 + 9a2

[
4 log z + 6 − 10 log ρ− log(ρ2 + 9a2)

]
(B.10)

This solution has the right singularity structure at z = 0 and ρ = 0, but it does not

transform correctly under SL(2,Z); only the particular solution does. We therefore

conclude that the correction to the 3-form flux, which is in general a linear combination

of P3 and Ghom3 , is given by (B.5) only

Ĝ3 = G3 + P3 . (B.11)

We can now determine the change in the remaining fluxes and the warp factor, at least to

linear order in (gsN). We find the corrected fluxes from the equations

Ĥ3 =
Ĝ3 − Ĝ3

τ − τ̄
and F̃3 =

Ĝ3 + Ĝ3

2
, (B.12)
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which evaluates to

Ĥ3 = dρ ∧ eψ ∧ (c1 dθ1 + c2 dθ2) + dρ ∧ (c3 sin θ1 dθ1 ∧ dφ1 − c4 sin θ2 dθ2 ∧ dφ2)

+

(
ρ2 + 6a2

2ρ
c1 sin θ1 dφ1 −

ρ

2
c2 sin θ2 dφ2

)
∧ dθ1 ∧ dθ2 , (B.13)

F̃3 = − 1

gs
dρ ∧ eψ ∧ (c1 sin θ1 dφ1 + c2 sin θ2 dφ2)

+
1

gs
eψ ∧ (c5 sin θ1 dθ1 ∧ dφ1 − c6 sin θ2 dθ2 ∧ dφ2)

− 1

gs
sin θ1 sin θ2

(
ρ

2
c2 dθ1 −

ρ2 + 6a2

2ρ
c1 dθ2

)
∧ dφ1 ∧ dφ2 . (B.14)

We have introduced the coefficients

c1 =
g2
sPN

4πρ(ρ2 + 6a2)2
(
72a4 − 3ρ4 − 56a2ρ2 log ρ+ a2ρ2 log(ρ2 + 9a2)

)
cos

θ1
2

c2 =
3g2
sPN

4πρ3

(
ρ2 − 9a2 log(ρ2 + 9a2)

)
cos

θ2
2

c3 =
3gsPρ

ρ2 + 9a2
+

g2
sPN

8πρ(ρ2 + 9a2)

[
−36a2 − 36ρ2 log a+ 34ρ2 log ρ

+ (10ρ2+ 81a2) log(ρ2+ 9a2)+ 12ρ2 log

(
sin

θ1
2

sin
θ2
2

)]

c4 =
3gsP (ρ2 + 6a2)

κρ3
+
g2
sNP

8πκρ3

[
18a2 − 36(ρ2 + 6a2) log a+ (34ρ2 + 36a2) log ρ

+ (10ρ2+ 63a2) log(ρ2+ 9a2)+ (12ρ2+ 72a2) log

(
sin

θ1
2

sin
θ2
2

)]

c5 = gsP +
g2
sPN

24π(ρ2 + 6a2)

[
18a2 − 36(ρ2 + 6a2) log a+ 8(2ρ2 − 9a2) log ρ

+(10ρ2 + 63a2) log(ρ2 + 9a2)
]

c6 = gsP+
g2
sPN

24πρ2

[
− 36a2− 36ρ2 log a+ 16ρ2 log ρ+ (10ρ2+ 81a2) log(ρ2+ 9a2)

]
(B.15)

This allows us to write the NS 2-form potential

B2 =

(
b1(ρ) cot

θ1
2
dθ1 + b2(ρ) cot

θ2
2
dθ2

)
∧ eψ

+

[
3g2
sNP

4π

(
1 + log(ρ2 + 9a2)

)
log

(
sin

θ1
2

sin
θ2
2

)
+ b3(ρ)

]
sin θ1 dθ1 ∧ dφ1

−
[
g2
sNP

12πρ2

(
−36a2 + 9ρ2 + 16ρ2 log ρ+ ρ2 log(ρ2 + 9a2)

)
log

(
sin

θ1
2

sin
θ2
2

)
+ b4(ρ)

]

× sin θ2 dθ2 ∧ dφ2 (B.16)

with the ρ-dependent functions

b1(ρ) =
g2
SNP

24π(ρ2 + 6a2)

(
18a2 + (16ρ2 − 72a2) log ρ+ (ρ2 + 9a2) log(ρ2 + 9a2)

)

b2(ρ) = −3g2
sNP

8πρ2

(
ρ2 + 9a2

)
log(ρ2 + 9a2) (B.17)
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and b3(ρ) and ba(ρ) are given by the first order differential equations

b′3(ρ) =
3gsPρ

ρ2 + 9a2
+

g2
sNP

8πρ(ρ2 + 9a2)

[
− 36a2 − 36a2 log a+ 34ρ2 log ρ

+(10ρ2 + 81a2) log(ρ2 + 9a2)
]

b′4(ρ) = −3gsP (ρ2 + 6a2)

κρ3
− g2

sNP

8πκρ3

[
18a2 − 36(ρ2 + 6a2) log a

+(34ρ2 + 36a2) log ρ+ (10ρ2 + 63a2) log(ρ2 + 9a2)
]

(B.18)

The five-form flux is as usual given by

F̂5 = (1 + ∗̃10)(dĥ
−1 ∧ d4x) . (B.19)

In order to solve the supergravity equations of motion, the warp factor has to fulfill

ĥ2 ∆ĥ−1 − 2ĥ3 ∂mĥ
−1 ∂nĥ

−1gmn = −∆ĥ = ∗6

(
Ĝ3 ∧ Ĝ3

6 (τ − τ)

)
=

1

6
∗6 dF̂5 , (B.20)

where ∆ is the Laplacian on the unwarped resolved conifold and all indices are raised and
lowered with the unwarped metric. This should be evaluated in linear order in N, since
we solved the SuGra eom for the fluxes also in linear order. However, we were unable to
find an analytic solution to this problem, so we need to employ some simplification. We
can take the limit ρ ≫ a, i.e. we restrict ourselves to be far from the tip. As in the limit
a→ 0 we recover the singular conifold setup [22], we know our solution takes the form

ĥ(ρ, θ1, θ2)=1+
L4

r4

{
1+

24gsP
2

πα′Q
log ρ

[
1+

3gsN

2πα′

(
log ρ+

1

2

)
+
gsN

2πα′
log

(
sin

θ1
2

sin
θ2
2

)]}
+O

(
a2

ρ2

)

(B.21)

with L4 = 27πgsα
′Q/4. Unfortunately, we cannot give an explicit expression for the

a2/ρ2 corrections. However, above result is already an improvement over using the simple

Klebanov-Tseytlin warp factor (which is strictly only valid for the singular solution, but

is often employed in the deformed KS geometry).
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